精英家教網 > 初中數學 > 題目詳情

如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.

求證:AD·CE=DE·DF.

答案:
解析:

  [答案]連接AF,則由DF是直徑得,∠DAF,∠F+∠ADF

  ∵∠ABD=∠F,又∠ABD=∠ADG

  ∴∠F=∠ADG.  ∴∠ADG+∠ADF=∠F+∠ADF

  ∴∠EDC.  又∠ABC,

  故以EC為直徑作圓,則點B、D必在這個圓上.

  ∴∠DCE=∠DBE,∴∠DCE=∠F

  ∴△DCE∽△AFD.  ∴,即AD·CEDE·DF

  [剖析]AD·CEDE·DF寫成,于是可考慮證△ADF∽△DEC


提示:

  說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路推導過程寫出來(要求至少寫3)(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.

 、佟CDB=∠CEB;

 、ADEC;

 、邸DEC=∠ADF,且∠CDE

  [方法提煉]

  證明線段成比例,一般是尋找(或構造)相似三角形.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.
求證:AD•CE=DE•DF;
說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);
(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得8分;選、谕瓿勺C明得6分;選、弁瓿勺C明得4分.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=精英家教網∠ABD.
(1)求證:CD是⊙O的切線;
(2)若∠CDB=∠CBD,⊙O的直徑為6,CD=4,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2005•東城區(qū)一模)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB于點B,G是直線CD上一點,∠ADG=∠ABD,AD∥CE.
(1)求證:AD•CE=DE•DF.
(2)若∠DAE=30°,BC=2,AD=
5
2
,AE:BE=2:3,求
BD
的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.
求證:AD•CE=DE•DF;
說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);
(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

查看答案和解析>>

科目:初中數學 來源:2013年福建省泉州市南安實驗中學中考數學模擬試卷(解析版) 題型:解答題

如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.
(1)求證:CD是⊙O的切線;
(2)若∠CDB=∠CBD,⊙O的直徑為6,CD=4,求CE的長.

查看答案和解析>>

同步練習冊答案