【題目】如圖,已知函數(shù)y=ax2+bx+c(a≠0),有下列四個結(jié)論:①abc>0;②4a+2b+c>0;③3a+c<0;④a+b≥m(am+b),其中正確的有(

A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:①拋物線開口方向向下,則a<0.拋物線對稱軸在y軸的右側(cè),則a、b異號,所以ab<0.
又∵拋物線與y軸交于正半軸,則c>0,
∴abc<0,故①錯誤;②如圖所示,當x=0時,y>0,則根據(jù)拋物線的對稱性知,當x=2時,y>0,即4a+2b+c>0.
故②正確;③如圖所示,∵當x=﹣1時,y<0,對稱軸x=﹣ =1,
∴b=﹣2a,則﹣3a﹣c=﹣(a﹣b+c)>0,即﹣3a﹣c>0,
即3a+c<0,故③正確;④⑤∵x=1時,y=a+b+c(最大值),
x=m時,y=am2+bm+c,
∵m≠1的實數(shù),
∴a+b+c>am2+bm+c,
∴a+b>m(am+b)成立.
∴④正確.
綜上所述,正確的結(jié)論有3個.
故選:C.

【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荊州市某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為: ,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:

(1)求日銷售量y與時間t的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?
(4)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=x2﹣4x+3與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點P(x1 , y1),Q(x2 , y2),與直線BC交于點N(x3 , y3),若x1<x2<x3 , 結(jié)合函數(shù)的圖象,求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1) ;
(2)解不等式:3x﹣5≤2(x+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是(把你認為正確結(jié)論的序號都填上.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=ax2+bx+c與x軸交于A,B兩點,與y軸交于正半軸C點,且AC=20,BC=15,∠ACB=90°,則此拋物線的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,坐標平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A、B兩點,與y軸交于C點,其頂點為D,且k>0.若△ABC與△ABD的面積比為1:4,則k值為何?(

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,將△ABC繞點A順時針旋轉(zhuǎn)40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C為線段AB上一點,△ACM、△CBN是等邊三角形,直線AN、MC交于點E,直線BM、CN交于點F.

(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其它條件不變,在圖②中補出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說明理由.

查看答案和解析>>

同步練習(xí)冊答案