試題分析:(1)首先過點E作EG⊥y軸于點G,由點E的坐標為(1,1),可得EG=1.繼而可求得∠ECG的度數(shù),又由∠OFC=30°,∠FOC=90°,可求得∠FCE=∠OCF+∠ECG=90°.
(2)首先過點E作EH⊥x軸于點H,易證得Rt△CEG≌Rt△BEH,又由EH⊥AB,EG⊥CD,則可證得AB=CD;
(3)連接OE,可求得OC=
+1與∠OEB+∠OEC=210°,繼而可求得陰影部分的面積.
試題解析:(1)過點E作EG⊥y軸于點G,
∵點E的坐標為(1,1),
∴EG=1.
在Rt△CEG中,sin∠ECG=
,
∴∠ECG=30°.
∵∠OFC=30°,∠FOC=90°,
∴∠OCF=180°﹣∠FOC﹣∠OFC=60°.
∴∠FCE=∠OCF+∠ECG=90°.
即CF⊥CE.
∴直線CF是⊙E的切線;
(2)過點E作EH⊥x軸于點H,
∵點E的坐標為(1,1),
∴EG=EH=1.
在Rt△CEG與Rt△BEH中,
∵
,
∴Rt△CEG≌Rt△BEH(HL).
∴CG=BH.
∵EH⊥AB,EG⊥CD,
∴AB=2BH,CD=2CG.
∴AB=CD;
(3)連接OE,
在Rt△CEG中,CG=
,
∴OC=
+1.
同理:OB=
+1.
∵OG=EG,∠OGE=90°,
∴∠EOG=∠OEG=45°.
又∵∠OCE=30°,
∴∠OEC=180°﹣∠EOG﹣∠OCE=105°.
同理:∠OEB=105°.
∴∠OEB+∠OEC=210°.
∴S
陰影=
.