22、問題:你能比較20092010和20102009的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大小(n為正整數(shù)),我們從n=1,n=2,n=3…這些簡單的情況入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜出結(jié)論.
(1)通過計算,比較下列各組數(shù)字大小
①12
21②23
32③34
43
④45
54⑤54
65⑥67
76

(2)把第(1)題的結(jié)果經(jīng)過歸納,你能得出什么結(jié)論?
(3)根據(jù)上面的歸納猜想得到的結(jié)論,試比較兩個數(shù)的大小:
20092010
20102009(填“>”、“<”或“=”)
分析:(1)通過計算即可得出答案,(2)分類進(jìn)行討論:當(dāng)n≤2時,nn+1<(n+1)n,當(dāng)n>2時,nn+1>(n+1)n,(3)根據(jù)規(guī)律進(jìn)行比較即可.
解答:解:(1)通過計算得出:12<21,23<32,34<43,45>54,54>65,67>76,
(2)把第(1)題的結(jié)果經(jīng)過歸納得出:
當(dāng)n≤2時,nn+1<(n+1)n,
當(dāng)n>2時,nn+1>(n+1)n,
(3)根據(jù)以上結(jié)論得出:20092010>20102009,
故答案為20092010>20102009
點(diǎn)評:本題考查了有理數(shù)的乘方和有理數(shù)大小比較,解題的關(guān)鍵是通過計算發(fā)現(xiàn)規(guī)律,然后根據(jù)規(guī)律進(jìn)行判斷就容易了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、問題:你能比較20052006和20062005的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大。╪為正整數(shù)),我們從n=1,n=2,n=3…這些簡單的情況入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜出結(jié)論.
(1)通過計算,比較下列各組數(shù)字大小
①12
21  ②23
32 ③34
43
④45
54     ⑤56
65      ⑥67
76

(2)根據(jù)上面的歸納猜想得到的結(jié)論,試比較下列兩個數(shù)的大小  20052006
20062005(填”>”,”<”,“=”)
(3)把第(1)題的結(jié)果經(jīng)過歸納,你能得出什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(一)問題:你能比較兩個數(shù)20092010和20102009的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學(xué)問題,寫出他的一般形式,即比較nn+1和(n+1)n的大小(n為自然數(shù)),然后我們分析這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計算,比較下列各組數(shù)的大。
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較下列兩個數(shù)的大。
①20092010
 
20102009;②-20092010
 
-20102009
(二)請比較大小:
231981+1
231982+1
 
231982+1
231983+1
,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個數(shù)20062007與20072006的大小嗎?為了解決問題,首先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1與(n+1)n的大小(n是正整數(shù)),然后,從分析n=1,n=2,n=3,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計算,比較下列各組中兩個數(shù)的大。ㄌ睢埃尽保埃肌,“=”)
①12
21;、23
32;③34
43;④45
54;⑤56
65; …
(2)根據(jù)上面的歸納猜想得到的一般結(jié)論,試比較下面兩個數(shù)的大。20062007
20072006
(3)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1與(n+1)n的大小關(guān)系是
當(dāng)n=1或2時,nn+1<(n+1)n;當(dāng)n>2的整數(shù)時,nn+1>(n+1)n
當(dāng)n=1或2時,nn+1<(n+1)n;當(dāng)n>2的整數(shù)時,nn+1>(n+1)n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較20112012和20122011的大小嗎?
為了解決這個問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的-般形式,即比較nn+1和(n+1)n的大小(n是正整數(shù)),然后,我們從分析n=1,n=2,n=3,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計算,比較下列各組中兩個數(shù)的大小(填“<”“>”或“=”):
①12
21;②23
32;③34
43;
④45
54;⑤56
65;…
(2)將題(1)的結(jié)果進(jìn)行歸納,可以猜想出nn+1和(n+1)n的大小關(guān)系是
當(dāng)n<3時,nn+1<(n+1)n,當(dāng)n≥3時,nn+1>(n+1)n
當(dāng)n<3時,nn+1<(n+1)n,當(dāng)n≥3時,nn+1>(n+1)n

(3)根據(jù)上面歸納猜想后得到的一般結(jié)論,試比較下列兩個數(shù)的大小:20112012
20122011

查看答案和解析>>

同步練習(xí)冊答案