如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(,),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)已知頂點(diǎn)C(1,1),設(shè)拋物線頂點(diǎn)式y(tǒng)=a(x-1)2+1,將A代入可求拋物線解析式,從而可得B點(diǎn)坐標(biāo),已知A,B兩點(diǎn)坐標(biāo),直線y=kx+m的圖象經(jīng)過(guò)A、B兩點(diǎn),代入可求k,m的值;
(2)點(diǎn)P在直線y=x+2故P(x,x+2),點(diǎn)E在拋物線y=x2-2x+2上,故E(x,x2-2x+2),∴h=PE=h=x+2-(x-1)2-1.又P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),∴0<x<;
(3)在P點(diǎn)運(yùn)動(dòng)過(guò)程中,∠DPE只可能是銳角或鈍角,故直角頂點(diǎn)只有兩種對(duì)應(yīng)關(guān)系,即O對(duì)D,O對(duì)E,分兩種情況,寫(xiě)成相似比,即△PDE∽△BOF,△PED∽△BOF,分別求解.
解答:解:(1)設(shè)拋物線解析式為y=a(x-1)2+1
∵A在拋物線上
=a(-1)2+1
∴a=1
∴二次函數(shù)解析式為y=(x-1)2+1(或y=x2-2x+2)
令x=0得:y=2
即B(0,2)在y=kx+m上
∴m=2
代入y=kx+2


(2)h=x+2-(x-1)2-1
=-x2+x(0<x<);

(3)假設(shè)存在點(diǎn)P,①當(dāng)∠PED=∠BOF=90°時(shí),由題意可得△PED∽△BOF

∴x=,
∵0<x<
∴x=(舍去)
而x=
∴存在點(diǎn)P,其坐標(biāo)為
②當(dāng)∠PDE=∠BOF=90°時(shí),
過(guò)點(diǎn)E作EK垂直于拋物線的對(duì)稱(chēng)軸,垂足為K.
由題意可得:△PDE∽△EKD,△PDE∽△BOF
∴△EKD∽△BOF


,舍去

∴存在點(diǎn)P,其坐標(biāo)為
綜上所述存在點(diǎn)P滿(mǎn)足條件,其坐標(biāo)為
,
點(diǎn)評(píng):本題考查了一次函數(shù)、二次函數(shù)解析式的求法,用坐標(biāo)表示線段的長(zhǎng),及相似條件的探求,具有較強(qiáng)的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+m與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸y上.
(1)求m的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高淳縣一模)如圖,已知二次函數(shù)y=-
1
2
x2+mx+3的圖象經(jīng)過(guò)點(diǎn)A(-1,
9
2
).
(1)求該二次函數(shù)的表達(dá)式,并寫(xiě)出該函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)點(diǎn)P(2a,a)(其中a>0),與點(diǎn)Q均在該函數(shù)的圖象上,且這兩點(diǎn)關(guān)于圖象的對(duì)稱(chēng)軸對(duì)稱(chēng),求a的值及點(diǎn)Q到y(tǒng)軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)如圖,已知二次函數(shù)y=ax2+bx+3的圖象過(guò)點(diǎn)A(-1,0),對(duì)稱(chēng)軸為過(guò)點(diǎn)(1,0)且與y軸平行的直線.
(1)求該二次函數(shù)的關(guān)系式;
(2)結(jié)合圖象,解答下列問(wèn)題:
①當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?
②當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,P為線段AB上一動(dòng)點(diǎn)(除A,B兩端點(diǎn)外),過(guò)P作x軸的垂線與二次函數(shù)的圖象交于點(diǎn)Q設(shè)線段PQ的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x.
(1)求二次函數(shù)的解析式;
(2)求l與x之間的函數(shù)關(guān)系式,并求出l的取值范圍;
(3)線段AB上是否存在一點(diǎn)P,使四邊形PQMA為梯形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=(x-1)2的圖象的頂點(diǎn)為C點(diǎn),圖象與直線y=x+m的圖象交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在y軸上.
(1)求m的值;
(2)點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案