已知關(guān)于x的兩個(gè)一元二次方程:
方程①: ;方程②: .
(1)若方程①有兩個(gè)相等的實(shí)數(shù)根,求解方程②;
(2)若方程①和②中只有一個(gè)方程有實(shí)數(shù)根,請(qǐng)說(shuō)明此時(shí)哪個(gè)方程沒(méi)有實(shí)數(shù)根,并化簡(jiǎn);
(3)若方程①和②有一個(gè)公共根,求代數(shù)式的值.
(1);(2);(3)5
【解析】
試題分析:(1)根據(jù)方程①有兩個(gè)相等實(shí)數(shù)根可得△,再結(jié)合一元二次方程的二次項(xiàng)系數(shù)不為0即可求得k的值,然后再代入方程②求解即可;
(2)由方程②得△2= ,再根據(jù)可得,由方程①、②只有一個(gè)有實(shí)數(shù)根可得,即可求得k的取值范圍,再根據(jù)二次根式的性質(zhì)化簡(jiǎn)即可;
(3)由a是方程①和②的公共根可得,,即可得到,,從而可以求得結(jié)果.
解:(1)∵方程①有兩個(gè)相等實(shí)數(shù)根
∴
由③得k+2¹0
由④得(k+2)(k+4)=0
∵k+2¹0
∴k=-4
當(dāng)k=-4時(shí),方程②為: .
解得;
(2)由方程②得△2= .
=-(k + 2) (k+4) =3k2+6k+5 =3(k+1)2+2>0.
∴.
∵方程①、②只有一個(gè)有實(shí)數(shù)根,
∴
∴此時(shí)方程①?zèng)]有實(shí)數(shù)根.
由
得(k+2)(k+4)<0
.
∵(k+2)(k+4)<0
∴;
(3)∵a是方程①和②的公共根
∴,
∴,
=
=
=2+3=5.
考點(diǎn):一元二次方程根的判別式,解一元二次方程
點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握一元二次方程根的情況與判別式△的關(guān)系:(1)方程有兩個(gè)不相等的實(shí)數(shù)根;(2)方程有兩個(gè)相等的實(shí)數(shù)根;(3)方程沒(méi)有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
2 |
1-
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
13 |
2 |
9 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的兩個(gè)一元二次方程:
方程①: ; 方程②: .
(1)若方程①有兩個(gè)相等的實(shí)數(shù)根,求解方程②;
(2)若方程①和②中只有一個(gè)方程有實(shí)數(shù)根, 請(qǐng)說(shuō)明此時(shí)哪個(gè)方程沒(méi)有實(shí)數(shù)根, 并化
簡(jiǎn);
(3)若方程①和②有一個(gè)公共根a, 求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市海淀區(qū)九年級(jí)上學(xué)期期中測(cè)評(píng)數(shù)學(xué)卷 題型:解答題
已知關(guān)于x的兩個(gè)一元二次方程:
方程①: ; 方程②: .
(1)若方程①有兩個(gè)相等的實(shí)數(shù)根,求解方程②;
(2)若方程①和②中只有一個(gè)方程有實(shí)數(shù)根, 請(qǐng)說(shuō)明此時(shí)哪個(gè)方程沒(méi)有實(shí)數(shù)根, 并化
簡(jiǎn);
(3)若方程①和②有一個(gè)公共根a, 求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆北京市海淀區(qū)九年級(jí)上學(xué)期期中測(cè)評(píng)數(shù)學(xué)卷 題型:解答題
已知關(guān)于x的兩個(gè)一元二次方程:
方程①: ; 方程②: .
(1)若方程①有兩個(gè)相等的實(shí)數(shù)根,求解方程②;
(2)若方程①和②中只有一個(gè)方程有實(shí)數(shù)根, 請(qǐng)說(shuō)明此時(shí)哪個(gè)方程沒(méi)有實(shí)數(shù)根, 并化
簡(jiǎn);
(3)若方程①和②有一個(gè)公共根a, 求代數(shù)式的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com