【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.

證明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定義)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代換)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

【答案】 同位角相等,兩直線平行;∠ACD兩直線平行,內(nèi)錯角相等ACD;同位角相等,兩直線平行;ADC;兩直線平行,同位角相等;垂直定義等量代換;垂直定義

【解析】

試題分析:靈活運用垂直的定義,注意由垂直可得90°角,由90°角可得垂直,結(jié)合平行線的判定和性質(zhì),只要證得∠ADC=90°,即可得CD⊥AB.

試題解析:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定義)

∴DG∥AC(同位角相等,兩直線平行)

∴∠2=∠ACD(兩直線平行,內(nèi)錯角相等)

∵∠1=∠2(已知)

∴∠1=∠ACD(等量代換)

∴EF∥CD(同位角相等,兩直線平行)

∴∠AEF=∠ADC(兩直線平行,同位角相等)

∵EF⊥AB(已知)

∵∠AEF=90°(垂直定義)

∴∠ADC=90°(等量代換)

∴CD⊥AB(垂直定義).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活與應用:

在一條筆直的東西走向的馬路上,有少年宮、學校、超市、醫(yī)院四家公共場所.已知少年宮在學校東300米,超市在學校西200米,醫(yī)院在學校東500米.

(1)你能利用所學過的數(shù)軸知識描述它們的位置嗎?

(2)小明放學后要去醫(yī)院看望生病住院的奶奶,他從學校出發(fā)向西走了200米,又向西走了﹣700米,你說他能到醫(yī)院嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線y=x2﹣4x+t(t為實數(shù))在0≤x≤3的范圍內(nèi)與x軸有公共點,則t的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化妝品銷售公司每月收益y萬元與銷售量x萬件的函數(shù)關系如圖所示.(收益=銷售利潤﹣固定開支)

(1)寫出圖中點A與點B的實際意義;

(2)求y與x的函數(shù)表達式;

(3)已知目前公司每月略有虧損,為了讓公司扭虧為盈,經(jīng)理決定將每件產(chǎn)品的銷售單價提高2元,請在圖中畫出提價后y與x函數(shù)關系的圖象,并直接寫出該函數(shù)的表達式.(要標出確定函數(shù)圖象時所描的點的坐標)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:

小明:原式=﹣×5=﹣=﹣249;

小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249

(1)對于以上兩種解法,你認為誰的解法較好?

(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;

(3)用你認為最合適的方法計算:19×(﹣8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(-3)-(-15)÷(-3);   (2)(-42)÷(-7)-(-6)×4;

(3)-14×[2-(-3)2];   (4)-13-(1-0.5)2××(2-22);   

(5)10+8×(-)2-2÷;   (6)(-1)10-(-3)×|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AC=6,以點A為圓心,AB長為半徑畫弧DE,若∠1=∠2,則弧DE的長為( 。

A.1π
B.1.5π
C.2π
D.3π

查看答案和解析>>

同步練習冊答案