在△ABC中,∠C=90°,tanA=
1
3
,則cosA的值為( 。
分析:根據(jù)正切的定義得到tanA=
BC
AC
=
1
3
,于是可設(shè)BC=x,則AC=3x,根據(jù)勾股定理計(jì)算出AB,然后利用余弦的定義求解.
解答:解:如圖,
∵tanA=
BC
AC
=
1
3
,
∴設(shè)BC=x,則AC=3x,
∴AB=
AC2+BC2
=
10
x,
∴cosA=
AC
AB
=
3x
10
x
=
3
10
10

故選D.
點(diǎn)評(píng):本題考查了三角形函數(shù)的定義:在三角形三角形中,一銳角的余弦等于它的鄰邊與斜邊的比值;這個(gè)銳角的正切等于它的對(duì)邊與鄰邊的比值.也考查了勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長(zhǎng)為(  )
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案