分析 首先結(jié)合角平分線的性質(zhì)結(jié)合三角形內(nèi)角和定理得出∠DPB=∠EPC=60°,∠BPC=120°,再證明△DBP≌△FBP(SAS),進(jìn)而得出△CEP≌△CFP(ASA),求出EC=FC,進(jìn)而得出答案.
解答 證明:截取BF=BD,
∵∠A=60°,BE,CD分別平分∠ABC,∠ACB,
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)=60°,
∴∠DPB=∠EPC=60°,∠BPC=120°,
在△DBP和△FBP中,
$\left\{\begin{array}{l}{BD=BF}\\{∠DBP=∠FBP}\\{BP=BP}\end{array}\right.$,
∴△DBP≌△FBP(SAS),
∴∠DPB=∠BPF=60°,
∴∠CPF=60°,
在△CEP和△CFP中,
$\left\{\begin{array}{l}{∠CEP=∠FCP}\\{PC=CP}\\{∠EPC=∠FPC}\end{array}\right.$,
∴△CEP≌△CFP(ASA),
∴FC=EC,
∴BD+EC=BF+FC,
∴BD+CE=BC.
點(diǎn)評(píng) 本題考查了全等三角形的判定以及全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△CEP≌△CFP是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | am與bm | B. | a2m與b2m | C. | am與-bm | D. | a2m與-b2m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x+6=0 | B. | $\frac{2}{3}$x=2 | C. | 5-3x=1 | D. | 3(x-1)=x+1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com