【題目】已知,在平面直角坐標系中,點A的坐標為(0,a),點B,點C的坐標分別為(-b,0),(b,0).
(1)如圖,求點A,B,C的坐標;
(2)如圖,若點D在第一象限且滿足AD=AC,∠DAC=90°,求BD;
(3)如圖,在(2)的條件下,若在第四象限有一點E,滿足∠BEC=∠BDC,請?zhí)骄?/span>BE,CE,AE之間的數(shù)量關(guān)系.
【答案】(1)A(0,1),B(,0),C(,0);(2)BD=;(3)BE+CE=AE
【解析】
(1)根據(jù)二次根式有意義的條件和絕對值的非負性即可求解;
(2)在平面直角坐標系中,利用已知條件,構(gòu)造全等直角三角形,再利用等腰直角三角形的性質(zhì)求出的長.
(3)要證明之間的數(shù)量關(guān)系,通常需要轉(zhuǎn)化到同一個三角形中,通過構(gòu)造全等三角形,把相同的線段轉(zhuǎn)化到同一個三角形中,再利用全等三角形的性質(zhì)和特殊三角形邊之間的關(guān)系即可求得
解:(1)
(2)過點D作DH⊥y軸于點H,
過D作DG⊥x軸于G,則DG=HO= , ,
,
(3)由(2)知,
∴∠BFC=60°
延長EB至H,使得BH=CE,連接AH
即.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,AD是△ABC的角平分線,且AD=BD,
(1)求證:△CDA∽△CAB;
(2)若AD=6,CD=5,求AC的值;
(3)如圖2,延長AD至E,使AE=AB,過E點作EF∥AB,交AC于點F,試探究線段EF
與線段AD的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在4×4的正方形網(wǎng)格中,△ABC的頂點都在格點上,下列結(jié)論錯誤的是( 。
A. AB=5 B. ∠C=90° C. AC=2 D. ∠A=30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,,,點D在x軸上,若在線段包括兩個端點上找點P,使得點A,D,P構(gòu)成等腰三角形的點P恰好只有1個,下列選項中滿足上述條件的點D坐標不可以是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1,小正方形的頂點稱為格點,在正方形網(wǎng)格中分別畫出下列圖形:
在網(wǎng)格中畫出長為的線段AB.
在網(wǎng)格中畫出一個腰長為、面積為3的等腰DEF.
(3)利用網(wǎng)格,可求出三邊長分別為,,的三角形面積為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應在y軸左側(cè),與圖象不符,故B選項錯誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應在y軸左側(cè),與圖象相符,故D選項正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長為16,面積為,E為AB的中點,若P為對角線BD上一動點,則EP+AP的最小值為( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛,設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中y與x之間的函數(shù)關(guān)系,已知兩車相遇時快車比慢車多行駛40千米,快車到達乙地時,慢車還有( )千米到達甲地.
A. 70 B. 80 C. 90 D. 100
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[背景知識]數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美的結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上A點、B點表示的數(shù)為a、b,則A,B兩點之間的距離AB=|a﹣b|,若a>b,則可簡化為AB=a﹣b;線段AB的中點M表示的數(shù)為.
[問題情境]
已知數(shù)軸上有A、B兩點,分別表示的數(shù)為﹣10,8,點A以每秒3個單位的速度沿數(shù)軸向右勻速運動,點B以每秒2個單位向左勻速運動.設(shè)運動時間為t秒(t>0).
[綜合運用]
(1)運動開始前,A、B兩點的距離為 ;線段AB的中點M所表示的數(shù) .
(2)點A運動t秒后所在位置的點表示的數(shù)為 ;點B運動t秒后所在位置的點表示的數(shù)為 ;(用含t的代數(shù)式表示)
(3)它們按上述方式運動,A、B兩點經(jīng)過多少秒會相遇,相遇點所表示的數(shù)是什么?
(4)若A,B按上述方式繼續(xù)運動下去,線段AB的中點M能否與原點重合?若能,求出運動時間,并直接寫出中點M的運動方向和運動速度;若不能,請說明理由.(當A,B兩點重合,則中點M也與A,B兩點重合)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.
(1)如圖1,過點A作AF⊥AB,截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點,且CE=BD,直線AE、CD相交于點P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com