【題目】我國是世界上嚴重缺水的國家之一,2011年春季以來,我省遭受了嚴重的旱情,某校為了組織“節(jié)約用水從我做起”活動,隨機調(diào)查了本校120名同學(xué)家庭月人均用水量和節(jié)水措施情況,如圖1、圖2是根據(jù)調(diào)查結(jié)果做出的統(tǒng)計圖的一部分.

請根據(jù)信息解答下列問題:

(1)1中淘米水澆花所占的百分比為 ;

(2)1中安裝節(jié)水設(shè)備所在的扇形的圓心角度數(shù)為 ;

(3)補全圖2;

(4)如果全校學(xué)生家庭總?cè)藬?shù)為3000人,根據(jù)這120名同學(xué)家庭月人均用水量,估計全校學(xué)生家庭月用水總量是多少噸?

【答案】【解】 (1)15﹪;(2)108°;(3) 見解析;(4)全校學(xué)生家庭月用水總量是9600

【解析】

1)根據(jù)扇形統(tǒng)計圖的特點可知,用1減去其他3種節(jié)水措施所占的百分比即可解答.
2)用安裝節(jié)水設(shè)備所在的扇形的百分比乘360度,即可得出正確答案.
3)根據(jù)隨機調(diào)查了本校120名同學(xué)家庭可知總數(shù)為120,減去其他4組的戶數(shù)得出答案,再畫圖即可解答.
4)先求出這120名同學(xué)家庭月人均用水量,再用樣本估計總體的方法即可解答.

1)淘米水澆花所占的百分比為1-30%-44%-11%=15%
2)安裝節(jié)水設(shè)備所在的扇形的圓心角度數(shù)為360°×30%=108°.
3)如圖

4)(1×10+2×42+3×20+4×32+5×16)÷120×3000
=9100噸.
即全校學(xué)生家庭月用水總量是9100噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yax+bx軸于點A,交y軸于點B,且a,b滿足a+4,直線ykx4k過定點C,點D為直線ykx4k上一點,∠DAB45°

1a   b   ,C坐標(biāo)為   ;

2)如圖1,k=﹣1時,求點D的坐標(biāo);

3)如圖2,在(2)的條件下,點M是直線ykx4k上一點,連接AM,將AMA順時針旋轉(zhuǎn)90°AQ,OQ最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A移動到點A',點BC的對應(yīng)點分別是點B'、C'.

1)△ABC的面積是   

2)畫出平移后的△A'B'C';

3)若連接AA'、CC′,這兩條線段的關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.

(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) 分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(注:方差公式 .)
(1)完成表中填空①;②
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績的方差為 ,你認為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2,直線ll1、l2分別交于A、B兩點,點M、N分別在l1、l2上,點M、N、P均在l的同側(cè)(點P不在l1l2上),若∠PAM=α,∠PBN=β

1)當(dāng)點Pl1l2之間時.

①求∠APB的大。ㄓ煤αβ的代數(shù)式表示);

②若∠PAM的平分線與∠PBN的平分線交于點P1,∠P1AM的平分線與∠P1BN的平分線交于點P2,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn,則∠AP1B=  ,∠APnB=  .(用含α、β的代數(shù)式表示,其中n為正整數(shù))

2)當(dāng)點P不在l1l2之間時.

若∠PAM的平分線與∠PBN的平分線交于點P,∠P1AM的平分線與∠P1BN的平分線交于點P2,,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn,請直接寫出∠APnB的大小.(用含α、β的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC、BD交于點OBDAD于點D,將ABD沿BD翻折得到EBD,連接EC、EB

1)求證:四邊形DBCE是矩形;

2)若BD=4,AD=3,求點OAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM= ,則MN的長為。

查看答案和解析>>

同步練習(xí)冊答案