如圖,在平面直角坐標(biāo)系中,過點的直線與軸平行,且直線分別與反比例函數(shù) 和 的圖象交于點、點.
⑴ 求點的坐標(biāo);
⑵ 若△的面積為8 ,求k的值 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知兩條平行線l1、l2之間的距離為6,截線CD分別交l1、l2于C、D兩點,一直角的頂點P在線段CD上運(yùn)動(點P不與點C、D重合),直角的兩邊分別交l1、l2與A、B兩點.
(1)操作發(fā)現(xiàn)
如圖1,過點P作直線l3∥l1,作PE⊥l1,點E是垂足,過點B作BF⊥l3,點F是垂足.此時,小明認(rèn)為△PEA∽△PFB,你同意嗎?為什么?
(2)猜想論證
將直角∠APB從圖1的位置開始,繞點P順時針旋轉(zhuǎn),在這一過程中,試觀察、猜想:當(dāng)AE滿足什么條件時,以點P、A、B為頂點的三角形是等腰三角形?在圖2中畫出圖形,證明你的猜想.
(3)延伸探究
在(2)的條件下,當(dāng)截線CD與直線l1所夾的鈍角為150°時,設(shè)CP=x,試探究:是否存在實數(shù)x,使△PAB的邊AB的長為4?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線 ()位于軸上方的圖象記為1 ,它與軸交于1 、兩點,圖象2與1關(guān)于原點對稱, 2與軸的另一個交點為2 ,將1與2同時沿軸向右平移12的長度即可得3與4 ;再將3與4 同時沿軸向右平移12的長度即可得5與6 ; ……按這樣的方式一直平移下去即可得到一系列圖象1 ,2 ,…… ,n ,我們把這組圖象稱為“波浪拋物線”.
⑴ 當(dāng)時,
① 求圖象1的頂點坐標(biāo);
② 點(2014 , -3) (填“在”或“不在”)該“波浪拋物線”上;若圖象n 的頂點n的橫坐標(biāo)為201,則圖象n 對應(yīng)的解析式為______ ,其自變量的取值范圍為_______.
⑵ 設(shè)圖象m、m+1的頂點分別為m 、m+1 (m為正整數(shù)),軸上一點Q的坐標(biāo)為(12 ,0).試探究:當(dāng)為何值時,以、m 、m+1、Q四點為頂點的四邊形為矩形?并直接寫出此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
兩個長為2cm,寬為1cm的長方形,擺放在直線l上(如圖①),CE=2cm,將長方形ABCD繞著點C順時針旋轉(zhuǎn)α角,將長方形EFGH繞著點E逆時針旋轉(zhuǎn)相同的角度.
(1)當(dāng)旋轉(zhuǎn)到頂點D、H重合時,連接AE、CG,求證:△AED≌△GCD(如圖②).
(2)當(dāng)α=45°時(如圖③),求證:四邊形MHND為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,x=﹣1是對稱軸,有下列判斷:
①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是拋物線上兩點,則y1>y2,
其中正確的是( )
| A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ②③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com