如圖所示,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,2),連接AC,若tan∠OAC=2.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使∠APC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖所示,連接BC,M是線段BC上(不與B、C重合)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作直線l′∥l,交拋物線于點(diǎn)N,連接CN、BN,設(shè)點(diǎn)M的橫坐標(biāo)為t.當(dāng)t為何值時(shí),△BCN的面積最大?最大面積為多少?

【答案】分析:(1)已知了C點(diǎn)的坐標(biāo),即可得到OC的長(zhǎng),根據(jù)∠OAC的正切值即可求出OA的長(zhǎng),由此可得到A點(diǎn)的坐標(biāo),將A、C的坐標(biāo)代入拋物線中,即可確定該二次函數(shù)的解析式;
(2)根據(jù)拋物線的解析式即可確定其對(duì)稱軸方程,由此可得到點(diǎn)P的橫坐標(biāo);若∠APC=90°,則∠PAE和∠CPD是同角的余角,因此兩角相等,則它們的正切值也相等,由此可求出線段PE的長(zhǎng),即可得到點(diǎn)P點(diǎn)的坐標(biāo);(用相似三角形求解亦可)
(3)根據(jù)B、C的坐標(biāo)易求得直線BC的解析式,已知了點(diǎn)M的橫坐標(biāo)為t,根據(jù)直線BC和拋物線的解析式,即可用t表示出M、N的縱坐標(biāo),由此可求得MN的長(zhǎng),以MN為底,B點(diǎn)橫坐標(biāo)的絕對(duì)值為高,即可求出△BNC的面積(或者理解為△BNC的面積是△CMN和△MNB的面積和),由此可得到關(guān)于S(△BNC的面積)、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求得S的最大值及對(duì)應(yīng)的t的值.
解答:解:(1)∵拋物線y=x2+bx+c過(guò)點(diǎn)C(0,2),
∴x=2;
又∵tan∠OAC==2,
∴OA=1,即A(1,0);
又∵點(diǎn)A在拋物線y=x2+bx+2上,
∴0=12+b×1+2,b=-3;
∴拋物線對(duì)應(yīng)的二次函數(shù)的解析式為y=x2-3x+2;

(2)存在.
過(guò)點(diǎn)C作對(duì)稱軸l的垂線,垂足為D,如圖所示,
∴x=-;
∴AE=OE-OA=-1=,
∵∠APC=90°,
∴tan∠PAE=tan∠CPD,
,即=,
解得PE=或PE=,
∴點(diǎn)P的坐標(biāo)為(,)或().(備注:可以用勾股定理或相似解答)

(3)如圖所示,易得直線BC的解析式為:y=-x+2,
∵點(diǎn)M是直線l′和線段BC的交點(diǎn),
∴M點(diǎn)的坐標(biāo)為(t,-t+2)(0<t<2),
∴MN=-t+2-(t2-3t+2)=-t2+2t,
∴S△BCN=S△MNC+S△MNB=MN?t+MN?(2-t),
=MN?(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1,
∴當(dāng)t=1時(shí),S△BCN的最大值為1.
備注:如果沒(méi)有考慮取值范圍,可以不扣分.
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,主要考查了二次函數(shù)解析式的確定、相似三角形的性質(zhì)、解直角三角形、函數(shù)圖象交點(diǎn)以及圖形面積的求法等重要知識(shí)點(diǎn);能夠?qū)D形面積最大(小)問(wèn)題轉(zhuǎn)換為二次函數(shù)的最值問(wèn)題是解答(3)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,拋物線y=ax2+bx+c與兩坐標(biāo)軸的交點(diǎn)分別是A、B、E,且△ABE是等腰直角三角形,AE=BE,則下列關(guān)系式中不能成立的是( 。
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河源二模)已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線交y軸于點(diǎn)C,問(wèn)該拋物線對(duì)稱軸上是否存在點(diǎn)M,使得△MAC的周長(zhǎng)最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•槐蔭區(qū)一模)如圖所示,拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-1,0)、(0,-3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•陜西)如圖所示,拋物線對(duì)應(yīng)的函數(shù)解析表達(dá)式只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•陜西)如圖所示的拋物線是把y=-x2經(jīng)過(guò)平移而得到的.這時(shí)拋物線過(guò)原點(diǎn)O和x軸正向上一點(diǎn)A,頂點(diǎn)為P;
①當(dāng)∠OPA=90°時(shí),求拋物線的頂點(diǎn)P的坐標(biāo)及解析表達(dá)式;
②求如圖所示的拋物線對(duì)應(yīng)的二次函數(shù)在-
1
2
≤x≤
1
2
時(shí)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案