如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸兩交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<0<x2,則當(dāng)ax2+bx+c≤0時(shí),x的取值范圍是( )

A.x1<x<x2
B.x1≤x≤x2
C.-x1≤x≤x2
D.x≤x1或x≥x2
【答案】分析:由題意知:x的值為x1或x2時(shí)y=0時(shí),ax2+bx+c≤0時(shí)即y≤0再根據(jù)函數(shù)的增減性,求出y≤0時(shí),x的取值范圍.
解答:解:當(dāng)ax2+bx+c≤0時(shí),即y≤0,由圖象可知:x1≤x≤x2時(shí),y≤0
∴當(dāng)ax2+bx+c≤0時(shí),x的取值范圍是x1≤x≤x2
故選B.
點(diǎn)評(píng):解答此題的易錯(cuò)點(diǎn)為:由于對(duì)函數(shù)的增減性把握不準(zhǔn),導(dǎo)致對(duì)x的取值范圍的確定出現(xiàn)錯(cuò)誤,解答運(yùn)用數(shù)形結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤(rùn)s(萬元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤(rùn)s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬元;
(3)從第幾個(gè)月起公司開始盈利?該月公司所獲利潤(rùn)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習(xí)冊(cè)答案