分析 過E作EN⊥DC,可證得△BCG≌△DCE,從而可得到∠EDC=∠CBM,可證明△BCM∽△DNE∽△DHM,得出M為CD的中點,進一步求得BM和BH,可求得BH的長.
解答 解:過E作EN⊥DC,垂足為N,
∵CE=2$\sqrt{2}$,四邊形CEFG為正方形,
∴FC=4,
∵N為FC的中點,
∴DN=4,
∴EN:DN:DE=1:2:$\sqrt{5}$,
在△BCG和△DCE中,
$\left\{\begin{array}{l}{CB=CD}\\{∠BCG=∠DCE}\\{CG=CE}\end{array}\right.$,
∴△BCG≌△DCE(SAS),
∴∠EDC=∠CBM,
∴△BCM∽△DNE∽△DHM,
∴M為CD的中點,
∴BM=$\sqrt{5}$MC=3$\sqrt{5}$,HM=$\frac{DM}{\sqrt{5}}$=$\frac{3}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
∴BH=BM+HM=3$\sqrt{5}$+$\frac{3\sqrt{5}}{5}$=$\frac{18\sqrt{5}}{5}$.
故答案為:$\frac{18\sqrt{5}}{5}$.
點評 本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),利用相似三角形的性質(zhì)證得M為CD的中點,求出BM和HM是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com