分析 由BD:DC=1:3,可設(shè)BD=a,則CD=3a,根據(jù)等邊三角形的性質(zhì)和折疊的性質(zhì)可得:BM+MD+BD=5a,DN+NC+DC=7a,再通過證明△BMD∽△CDN即可證明AM:AN的值.
解答 解:∵BD:DC=1:3,
∴設(shè)BD=a,則CD=3a,
∵△ABC是等邊三角形,
∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,
由折疊的性質(zhì)可知:MN是線段AD的垂直平分線,
∴AM=DM,AN=DN,
∴BM+MD+BD=5a,DN+NC+DC=7a,
∵∠MDN=∠BAC=∠ABC=60°,
∴∠NDC+∠MDB=∠BMD+∠MBD=120°,
∴∠NDC=∠BMD,
∵∠ABC=∠ACB=60°,
∴△BMD∽△CDN,
∴(BM+MD+BD):(DN+NC+CD)=AM:AN,
即AM:AN=5:7,
故答案為$\frac{5}{7}$.
點(diǎn)評 本題考查了等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)以及折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8m2 | B. | 16m2 | C. | 12m2 | D. | 32m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第4張 | B. | 第5張 | C. | 第6張 | D. | 第7張 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 擴(kuò)大10倍 | B. | 不變 | C. | 擴(kuò)大5倍 | D. | 縮小5倍 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com