【題目】某服裝店用6000元購進(jìn)AB兩種新式服裝,按標(biāo)價售出后可獲得毛利潤3800(毛利潤=售價-進(jìn)價).這兩種服裝的進(jìn)價,標(biāo)價如表所示.

  

(1)求這兩種服裝各購進(jìn)的件數(shù);

(2)如果A種服裝按標(biāo)價的8折出售,B種服裝按標(biāo)價的7折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?

【答案】(1) A種服裝購進(jìn)50件,B種服裝購進(jìn)30;(2) 服裝店比按標(biāo)價出售少收入2440元.

【解析】試題分析:1設(shè)A種服裝購進(jìn)x件,B種服裝購進(jìn)y件,由總價=單價×數(shù)量,利潤=售價-進(jìn)價建立方程組求出其解即可;
2)分別求出打折后的價格,再根據(jù)少收入的利潤=總利潤-打折后A種服裝的利潤-打折后B中服裝的利潤,求出其解即可.

試題解析:(1)設(shè)A種服裝購進(jìn)x件,B種服裝購進(jìn)y件,由題意,得

解得:

答:A種服裝購進(jìn)50件,B種服裝購進(jìn)30件;

(2)由題意,得:

380050(100×0.860)30(160×0.7100)=38001000360=2440().

答:服裝店比按標(biāo)價售出少收入2440.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于兩點,其中點,點,點都在拋物線上,M為拋物線的頂點.

求拋物線的函數(shù)解析式;

的面積;

根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:

1作出ABC繞點A逆時針旋轉(zhuǎn)90°AB1C1

2作出ABC關(guān)于原點O成中心對稱的A1B2C2

3)請直接寫出以A1B2、C2為頂點的平行四邊形的第四個頂點D的坐標(biāo)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點BE分別在AC、DF上,AF分別交BDCE于點MN,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:

作出△繞點A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點O成中心對稱的△A1B2C2

(2)請直接寫出以A1B2、C2為頂點的平行四邊形的第四個頂點D的坐標(biāo) .(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角形的直角頂點0按圖1方式疊放在一起(其中∠C30°,∠CDO60°;∠OAB=∠OBA45°).COD繞著點O順時針旋轉(zhuǎn)一周,旋轉(zhuǎn)的速度為每秒10°,若旋轉(zhuǎn)時間為t秒,請回答下列問題:(請直接寫出答案)

(1)當(dāng)0t9(如圖2),∠BOC與∠AOD有何數(shù)量關(guān)系

(2)當(dāng)t為何值時,邊OACD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價為8元/千克,下面是他們在活動結(jié)束后的對話。

1求每天的銷售量y千克與銷售單價x之間的函數(shù)關(guān)系式。6分

2該超市銷售這種水果每天獲取的利潤為1040元,那么銷售單價為多少元?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,點E、F分別在AD、BC上,EFBD相交于點OAE=CF

1)求證:OE=OF;

2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案