【題目】(1)閱讀理解

利用旋轉(zhuǎn)變換解決數(shù)學(xué)問(wèn)題是一種常用的方法.如圖1,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),PA1,PBPC2.求∠BPC的度數(shù).

為利用已知條件,不妨把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△AP′C,連接PP′,則PP′的長(zhǎng)為_____;在△PAP′中,易證∠PAP′90°,且∠PP′A的度數(shù)為_____,綜上可得∠BPC的度數(shù)為_____;

(2)類比遷移

如圖2,點(diǎn)P是等腰RtABC內(nèi)的一點(diǎn),∠ACB90°,PA2,PBPC1,求∠APC的度數(shù);

(3)拓展應(yīng)用

如圖3,在四邊形ABCD中,BC3,CD5,ABACAD.∠BAC2ADC,請(qǐng)直接寫出BD的長(zhǎng).

【答案】12;30°;90°;(2)∠APC=90°;(3BD=

【解析】

1)由旋轉(zhuǎn)性質(zhì)、等邊三角形的判定可知△CP′P是等邊三角形,由等邊三角形的性質(zhì)知∠CP′P=60°,根據(jù)勾股定理逆定理可得△AP′P是直角三角形,繼而可得答案.

2)如圖2,把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△AP'C,連接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°;

3)如圖3,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACG,連接DG.則BD=CG,根據(jù)勾股定理求CG的長(zhǎng),就可以得BD的長(zhǎng).

解:(1)把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△AP'C,連接PP′(如圖1).

由旋轉(zhuǎn)的性質(zhì)知△CP′P是等邊三角形;

P′A=PB=、∠CP′P=60°、P′P=PC=2

在△AP′P中,∵AP2+P′A2=12+2=4=PP′2;

∴△AP′P是直角三角形;

∴∠P′AP=90°

PA=PC

∴∠AP′P=30°;

∴∠BPC=CP′A=CP′P+AP′P=60°+30°=90°

故答案為:2;30°90°;

2)如圖2,把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△AP'C,連接PP′

由旋轉(zhuǎn)的性質(zhì)知△CP′P是等腰直角三角形;

P′C=PC=1,∠CPP′=45°P′P=,PB=AP'=

在△AP′P中,∵AP'2+P′P2=2+2=2=AP2

∴△AP′P是直角三角形;

∴∠AP′P=90°

∴∠APP'=45°

∴∠APC=APP'+CPP'=45°+45°=90°

3)如圖3

AB=AC,

將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACG,連接DG.則BD=CG,

∵∠BAD=CAG,

∴∠BAC=DAG

AB=AC,AD=AG,

∴∠ABC=ACB=ADG=AGD,

∴△ABC∽△ADG

AD=2AB,

DG=2BC=6

過(guò)AAEBCE,

∵∠BAE+ABC=90°,∠BAE=ADC,

∴∠ADG+ADC=90°

∴∠GDC=90°,

CG=

BD=CG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種節(jié)能產(chǎn)品,投放市場(chǎng)供不應(yīng)求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬(wàn)元,每套產(chǎn)品的售價(jià)不低于120萬(wàn)元.已知這種產(chǎn)品的月產(chǎn)量()與每套的售價(jià)(萬(wàn)元)之間滿足關(guān)系式,月產(chǎn)量()與生產(chǎn)總成本(萬(wàn)元)存在如圖所示的函數(shù)關(guān)系.

(1)直接寫出之間的函數(shù)關(guān)系式;

(2)求月產(chǎn)量的取值范圍;

(3)當(dāng)月產(chǎn)量()為多少時(shí),這種產(chǎn)品的利潤(rùn)(萬(wàn)元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級(jí)350名學(xué)生參加的漢字聽(tīng)寫大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/

頻數(shù)

頻率

50≤x60

2

0.04

60≤x70

6

0.12

70≤x80

9

b

80≤x90

a

0.36

90≤x≤100

15

0.30

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

1a   ,b   ;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)這次比賽成績(jī)的中位數(shù)會(huì)落在   分?jǐn)?shù)段;

4)若成績(jī)?cè)?/span>90分以上(包括90分)的為優(yōu)等,則該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居衡陽(yáng),我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)求yx的函數(shù)關(guān)系式;

2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1000m2,若甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉種植面積的3倍,那么應(yīng)該怎忙分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問(wèn)題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】父親節(jié)即將到來(lái)之際,某商店準(zhǔn)備購(gòu)進(jìn)、兩種男裝進(jìn)行銷售,其中每套種男裝的進(jìn)價(jià)比每套種男裝的進(jìn)價(jià)多元用元購(gòu)進(jìn)種男裝的數(shù)量是用元購(gòu)進(jìn)種男裝數(shù)量的.

(1)求每套種男裝和每套種男裝的進(jìn)價(jià)各是多少元:

(2)若該商店本次購(gòu)進(jìn)種男裝的數(shù)量比購(gòu)進(jìn)種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價(jià)格為元,每套種男裝的銷售價(jià)格為元,若將本次購(gòu)進(jìn)的兩種男裝全部售出后獲得的利潤(rùn)不少于元,那么該商店至少需要購(gòu)進(jìn)種男裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明想測(cè)量河對(duì)岸的一幢高樓AB的高度,小明在河邊C處測(cè)得樓頂A的仰角是60°距C處60米的E處有幢樓房,小明從該樓房中距地面20米的D處測(cè)得樓頂A的仰角是30°(點(diǎn)B.C.E在同一直線上且AB、DE均與地面BE處置),求樓AB的高________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CDAB于點(diǎn)E.

(1)若A=48°,求OCE的度數(shù);

(2)若CD=4,AE=2,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案