【題目】(1)閱讀理解
利用旋轉(zhuǎn)變換解決數(shù)學(xué)問(wèn)題是一種常用的方法.如圖1,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),PA=1,PB=,PC=2.求∠BPC的度數(shù).
為利用已知條件,不妨把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△AP′C,連接PP′,則PP′的長(zhǎng)為_____;在△PAP′中,易證∠PAP′=90°,且∠PP′A的度數(shù)為_____,綜上可得∠BPC的度數(shù)為_____;
(2)類比遷移
如圖2,點(diǎn)P是等腰Rt△ABC內(nèi)的一點(diǎn),∠ACB=90°,PA=2,PB=,PC=1,求∠APC的度數(shù);
(3)拓展應(yīng)用
如圖3,在四邊形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,請(qǐng)直接寫出BD的長(zhǎng).
【答案】(1)2;30°;90°;(2)∠APC=90°;(3)BD=.
【解析】
(1)由旋轉(zhuǎn)性質(zhì)、等邊三角形的判定可知△CP′P是等邊三角形,由等邊三角形的性質(zhì)知∠CP′P=60°,根據(jù)勾股定理逆定理可得△AP′P是直角三角形,繼而可得答案.
(2)如圖2,把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△AP'C,連接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°;
(3)如圖3,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACG,連接DG.則BD=CG,根據(jù)勾股定理求CG的長(zhǎng),就可以得BD的長(zhǎng).
解:(1)把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△AP'C,連接PP′(如圖1).
由旋轉(zhuǎn)的性質(zhì)知△CP′P是等邊三角形;
∴P′A=PB=、∠CP′P=60°、P′P=PC=2,
在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;
∴△AP′P是直角三角形;
∴∠P′AP=90°.
∵PA=PC,
∴∠AP′P=30°;
∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.
故答案為:2;30°;90°;
(2)如圖2,把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△AP'C,連接PP′.
由旋轉(zhuǎn)的性質(zhì)知△CP′P是等腰直角三角形;
∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,
在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;
∴△AP′P是直角三角形;
∴∠AP′P=90°.
∴∠APP'=45°
∴∠APC=∠APP'+∠CPP'=45°+45°=90°
(3)如圖3,
∵AB=AC,
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACG,連接DG.則BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=2AB,
∴DG=2BC=6,
過(guò)A作AE⊥BC于E,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG=,
∴BD=CG=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種節(jié)能產(chǎn)品,投放市場(chǎng)供不應(yīng)求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬(wàn)元,每套產(chǎn)品的售價(jià)不低于120萬(wàn)元.已知這種產(chǎn)品的月產(chǎn)量(套)與每套的售價(jià)(萬(wàn)元)之間滿足關(guān)系式,月產(chǎn)量(套)與生產(chǎn)總成本(萬(wàn)元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出與之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量的取值范圍;
(3)當(dāng)月產(chǎn)量(套)為多少時(shí),這種產(chǎn)品的利潤(rùn)(萬(wàn)元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級(jí)350名學(xué)生參加的“漢字聽(tīng)寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 2 | 0.04 |
60≤x<70 | 6 | 0.12 |
70≤x<80 | 9 | b |
80≤x<90 | a | 0.36 |
90≤x≤100 | 15 | 0.30 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居衡陽(yáng),我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)求y與x的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1000m2,若甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉種植面積的3倍,那么應(yīng)該怎忙分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】父親節(jié)即將到來(lái)之際,某商店準(zhǔn)備購(gòu)進(jìn)、兩種男裝進(jìn)行銷售,其中每套種男裝的進(jìn)價(jià)比每套種男裝的進(jìn)價(jià)多元用元購(gòu)進(jìn)種男裝的數(shù)量是用元購(gòu)進(jìn)種男裝數(shù)量的倍.
(1)求每套種男裝和每套種男裝的進(jìn)價(jià)各是多少元:
(2)若該商店本次購(gòu)進(jìn)種男裝的數(shù)量比購(gòu)進(jìn)種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價(jià)格為元,每套種男裝的銷售價(jià)格為元,若將本次購(gòu)進(jìn)的、兩種男裝全部售出后獲得的利潤(rùn)不少于元,那么該商店至少需要購(gòu)進(jìn)種男裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想測(cè)量河對(duì)岸的一幢高樓AB的高度,小明在河邊C處測(cè)得樓頂A的仰角是60°距C處60米的E處有幢樓房,小明從該樓房中距地面20米的D處測(cè)得樓頂A的仰角是30°(點(diǎn)B.C.E在同一直線上且AB、DE均與地面BE處置),求樓AB的高________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點(diǎn)E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4,AE=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com