如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動點(diǎn)P從B點(diǎn)出發(fā),沿線段BC向點(diǎn)C作勻速運(yùn)動;動點(diǎn)Q從點(diǎn)D出發(fā),沿線段DA向點(diǎn)A作勻速運(yùn)動.過Q點(diǎn)垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N.P、Q兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度.當(dāng)Q點(diǎn)運(yùn)動到A點(diǎn),P、Q兩點(diǎn)同時停止運(yùn)動.設(shè)點(diǎn)Q運(yùn)動的時間為t秒.

(1)求PC、NC的長(用t的代數(shù)式表示);

(2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形?

(3)當(dāng)t為何值時,射線QN恰好將△ABC的面積平分?并判斷此時△ABC的周長是否也被射線QN平分.

答案:
解析:

  (1)PC=4t,NC=t+1  (2分)

  (2)當(dāng)QD=CP時,四邊形PCDQ構(gòu)成平行四邊形.

  ∴當(dāng),四邊形PCDQ構(gòu)成平行四邊形  (4分)

  (3)由AB‖MN,得△ABC△CMN相似,從而求出

  

  ∴

  ∴ ∴

  ∴  (4分)

  

  ∴此時  (2分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案