已知點A,B,經(jīng)過點A,B作半徑為3cm的圓,能作

[  ]

A.1個圓
B.2個圓
C.無數(shù)個圓
D.不能確定能否作圓

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,已知點A(0,1),B(-4,4),將點B繞點A順時針方向90°得到點C;頂點在坐標原點的拋物線經(jīng)過點B.
(1)求拋物線的解析式和點C的坐標;
(2)拋物線上一動點P,設(shè)點P到x軸的距離為d1,點P到點A的距離為d2,試說明d2=d1+1;
(3)在(2)的條件下,請?zhí)骄慨?dāng)點P位于何處時,△PAC的周長有最小值,并求出△PA精英家教網(wǎng)C的周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,已知點A(-2,-4),OB=2,拋物線y=ax2+bx+c經(jīng)過點A、O、B三點.
(1)求拋物線的函數(shù)表達式;
(2)若點M是拋物線對稱軸上一點,試求AM+OM的最小值;
(3)在此拋物線上,是否存在點P,使得以點P與點O、A、B為頂點的四邊形是梯形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鹽城模擬)如圖1,已知點A(a,0),B(0,b),且a、b滿足
a+1
+(a+b+3)2=0
,?ABCD的邊AD與y軸交于點E,且E為AD中點,雙曲線y=
k
x
經(jīng)過C、D兩點.
(1)求k的值;
(2)點P在雙曲線y=
k
x
上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;
(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當(dāng)T在AF上運動時,
MN
HT
的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點A(-1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點M,求AM的長;
(3)在雙曲線上是否存在點P,使得△MBP的面積為8?若存在請求P點坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標系中,已知點A(0,1),B(-4,4),將點B繞點A順時針方向90°得到點C;頂點在坐標原點的拋物線經(jīng)過點B.
(1)求拋物線的解析式和點C的坐標;
(2)拋物線上一動點P,設(shè)點P到x軸的距離為d1,點P到點A的距離為d2,試說明d2=d1+1;
(3)在(2)的條件下,請?zhí)骄慨?dāng)點P位于何處時,△PAC的周長有最小值,并求出△PAC的周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案