【題目】定義:在平面直角坐標(biāo)系中,圖形G上點Px,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y-x稱為點P坐標(biāo)差,而圖形G上所有點的坐標(biāo)差中的最大值稱為圖形G特征值

1)點A2,6)的坐標(biāo)差________;

2)求拋物線y=-x2+5.x+4特征值;

3)某二次函數(shù)y=-x2+bx+cc0)的特征值-1,點B與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C坐標(biāo)差相等,求此二次函數(shù)的解析式;

4)二次函數(shù)y=-x2+px+q的圖象的頂點在坐標(biāo)差2的一次函數(shù)的圖象上,四邊形DEFO是矩形,點E的坐標(biāo)為(7,3),點O為坐標(biāo)原點,點Dx軸上點下在x軸上,當(dāng)二次函數(shù)y=-x2+px+q的圖象與矩形的邊只有三個交點時,求此二次函數(shù)的解析式及特征值.

【答案】14;(28;(3y=-x2+3x-2;(4y=-x-52+7

【解析】

1)根據(jù)題目中的規(guī)定易得結(jié)論;

2)根據(jù)定義求出y-x是關(guān)于x的二次函數(shù),然后利用二次函數(shù)的性質(zhì)求出結(jié)論;

3)先求得拋物線與y軸的交點C0c),則點B的坐標(biāo)為(-c,0,把點B的坐標(biāo)代入二次函數(shù)解析式得到b=1-c,再將b=1-c代入二次函數(shù)解析式,求出特征值y-x的代數(shù)式,然后由坐標(biāo)值為-1求出c的值,繼而求出b的值,即可求出二次函數(shù)解析式;

4)先求出坐標(biāo)差2的一次函數(shù)的解析式為y=x+2,由二次函數(shù)y=-x2+px+q的圖象的頂點在直線y=x+2上,用頂點式可設(shè)二次函數(shù)為y=-x-m2+m+2.在兩種情況下二次函數(shù)的圖象與矩形只有三個交點:①拋物線頂點在直線y=x+2FE的交點上時(如圖①);②拋物線右側(cè)部分經(jīng)過點E時(如圖②).然后分別把(13)、(7,3)分別代入y=-x-m2+m+2,解得m的值,即可求出二次函數(shù)解析式,繼而求出其特征值.

1)根據(jù)坐標(biāo)差的定義得:6-2=4;

2y-x=-x2+5x+4-x=-x2+4x+4=-x-22+8,特征值是8

3)由題意,得點C的坐排為(0c),

∵點B與點C坐標(biāo)差相等,

B-c.0),把B-c,0)代入y=-x2+bx+c,得0=--c2+b×-c+c,

b=1-c

y=-x2+1-cx+c,

∵二次函數(shù)y=-x2+1-cx+c特征值-1.

y-x=-x2+(1-c)x+c-x=-x2-cx+c

=-1,

c=-2

b=3,

∴二次函數(shù)的解析式為y=-x2+3x-2

4)解:坐標(biāo)差2的一次函數(shù)為y=x+2,

∵二次函數(shù)y=-x2+px+q的圖象的頂點在直線y=x+2上,

∴設(shè)二次函數(shù)為y=-x-m2+m+2

二次函數(shù)的圖象與矩形有三個交點,如圖①、②,把(1,3)代入y=-x-m2+m+2,得3=-1-x2+m+2,解得m1=1m2=2(合去),

∴二次函數(shù)的解新式為y=-x-12+3,

y-x=-x-12+3-x=-x2+x+2=-x-2+,特征值是;

把(73)代入y=-x-m2+m+2,得3=-7-m2+m+2,解得m1=5,m2=10(舍去),

二次函數(shù)的解析或為y=-x-52+7,

y-x=-(x-5)2+7-x=-x2+9x-18=-x-2+,特征值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點和點,且頂點在第三象限,設(shè),則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·孝感)學(xué)生甲與學(xué)生乙玩一種轉(zhuǎn)盤游戲.如圖是兩個完全相同的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成面積相等的四個區(qū)域,分別用數(shù)字1、2、34表示.固定指針,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,任其自由停止,若兩指針?biāo)笖?shù)字的積為奇數(shù),則甲獲勝;若兩指針?biāo)笖?shù)字的積為偶數(shù),則乙獲勝;若指針指向扇形的分界線,則都重轉(zhuǎn)一次.在該游戲中乙獲勝的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣2,2),點B的坐標(biāo)為(6,6),拋物線經(jīng)過A、O、B三點,連結(jié)OA、OB、AB,線段ABy軸于點E

1)求點E的坐標(biāo);

2)求拋物線的函數(shù)解析式;

3)點F為線段OB上的一個動點(不與點OB重合),直線EF與拋物線交于M、N兩點(點Ny軸右側(cè)),連結(jié)ONBN,當(dāng)點F在線段OB上運動時,求△BON面積的最大值,并求出此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點A-4,-2)和Ba,4),直線ABy輸于點C,連接QAOB.

1)求反比例函數(shù)的解析式和點B的坐標(biāo):

2)根據(jù)圖象回答,當(dāng)x的取值在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值;

3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點DBC的中點作正方形DEFG,使點A、C分別在DGDE上,連接AE,BG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)

判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1

1)畫出△ABC

2)以點C為旋轉(zhuǎn)中心,畫出將△ABC順時針旋轉(zhuǎn)90度的△A1B1C,并求出線段CA掃過的面積;

3)以O為位似中心,在第一象限內(nèi)作出△A2B2C2使△A2B2C2與△ABC位似,且位似比為2,并寫出A2點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:24,20,1920,222320,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,第一象限內(nèi)的點P在直線yx上,過點P的直線交x軸正半軸于點A,交直線y3x于點B,點B在第一象限內(nèi).

(1)如圖1,當(dāng)∠OAB90°時,求的值;

(2)當(dāng)點A的坐標(biāo)為(6,0),且BP2AP時,將過點A的拋物線y=﹣x2+mx上下方平移,使它過點B,求平移的方向和距離.

查看答案和解析>>

同步練習(xí)冊答案