【題目】小蟲從某點(diǎn)出發(fā)在一條直線上來回爬行,規(guī)定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的各段路程依次記為(單位:-11、+8+9、-3、-6、+12-9.

1)小蟲最后中否回到出發(fā)點(diǎn),請(qǐng)判斷并且通過計(jì)算說明理由.

2)在爬行的過程中,如果每爬行一個(gè)單位長度獎(jiǎng)勵(lì)一粒芝麻,則整個(gè)運(yùn)動(dòng)過程中小蟲一共得到多少粒芝麻?

【答案】1)小蟲最后回到出發(fā)點(diǎn);理由見解析;(2)整個(gè)運(yùn)動(dòng)過程中小蟲一共得到58粒芝麻

【解析】

1)把記錄數(shù)據(jù)相加,即可求解;

2)由題意求出記錄的各數(shù)的絕對(duì)值的和可求出整個(gè)運(yùn)動(dòng)過程中小蟲爬行的總路程,再根據(jù)每爬行一個(gè)單位長度獎(jiǎng)勵(lì)一粒芝麻可得小蟲一共得到的芝麻粒數(shù)=總路程×每爬行一個(gè)單位長度獎(jiǎng)勵(lì)芝麻數(shù),即可求解.

1)根據(jù)題意可得:向右爬行的路程記為“+”,向左爬行的路程記為“-”.則小螞蟻?zhàn)詈箅x開出發(fā)點(diǎn)的距離是:

-11++8++9+-3+-6++12+-9=0

∴小蟲最后回到出發(fā)點(diǎn);

2)小螞蟻從離開出發(fā)點(diǎn)開始走的路程是:

cm

58×1=58(粒)

所以整個(gè)運(yùn)動(dòng)過程中小蟲一共得到58粒芝麻.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場銷售一款西服和領(lǐng)帶,西服每套定價(jià)600元,領(lǐng)帶每條定價(jià)80元,商場在黃金周期間開展促銷活動(dòng),向顧客提供兩種優(yōu)惠方案:①買一套西服送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價(jià)的90%付款.現(xiàn)某客戶要購買西裝20套,領(lǐng)帶x條(x20).

1)若該客戶按方案①購買,需付款多少元?(用含x的代數(shù)式表示)

2)若該客戶按方案②購買,需付款多少元?(用含x的代數(shù)式表示)

3)若x30,通過計(jì)算說明此時(shí)按哪種方案購買較為合算?

4)是否存在這樣的x值,兩種付款方式的錢數(shù)一樣多?如存在,請(qǐng)求這出這個(gè)值;如不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.

1)求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;

2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當(dāng)m>1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D.QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積(

A.減小 B.增大 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長為16,AE=4,求C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:abc0 b24ac0 4b+c0 若B(﹣,y1)、C,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2當(dāng)﹣3≤x≤1時(shí),y≥0,

其中正確的結(jié)論是(填寫代表正確結(jié)論的序號(hào))__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,他們的總成績(單位:環(huán))相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計(jì)圖表(如圖),并計(jì)算了甲成績的平均數(shù)和方差(見如圖小宇的作業(yè)).

甲、乙兩人射箭成績統(tǒng)計(jì)表

1

2

3

4

5

甲成績

9

4

7

4

6

乙成績

7

5

7

a

7

1a   ;

2)請(qǐng)完成圖中表示乙成績變化情況的折線.

3)觀察圖,可看出   的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計(jì)算方法,計(jì)算乙成績的方差,并驗(yàn)證你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(126+3

2)()(+)+(232;

用指定方法解下列一元二次方程:

3x236=0(直接開平方法);

4x24x=2(配方法);

52x25x+1=0(公式法);

6)(x+12+8x+1)+16=0(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCDEBC邊上一點(diǎn),且AB=AE,AEDC的延長線相交于點(diǎn)F.

(1)若∠F=62°,求∠D的度數(shù);

(2)BE=3EC,且EFC的面積為1,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案