【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連結CD,則CD的長是

【答案】5
【解析】解:由題意EF是線段AB的垂直平分線,
∴AD=DB,
Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,
∴AB= = =10,
∵AD=DB,∠ACB=90°,
∴CD= AB=5.
所以答案是5.

【考點精析】解答此題的關鍵在于理解直角三角形斜邊上的中線的相關知識,掌握直角三角形斜邊上的中線等于斜邊的一半,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直線 l 上依次擺放著七個正方形(如圖所示),已知斜放置的三個正方形的面積分別 a,b,c,正放置的四個正方形的面積依次為 S1,S2,S3,S4,則 S1+S2+S3+S4=( )

A. a+b B. b+c C. a+c D. a+b+c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2 , 從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為120米2
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價10%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=6.將該矩形紙片剪去3個等腰直角三角形,所有剪法中剩余部分面積的最小值是(  )

A.6
B.3
C.2.5
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請在網(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線.

(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們根據(jù)指數(shù)運算,得出了一種新的運算,如表是兩種運算對應關系的一組實例:

指數(shù)運算

21=2

22=4

23=8

31=3

32=9

33=27

新運算

log22=1

log24=2

log28=3

log33=1

log39=2

log327=3

根據(jù)上表規(guī)律,某同學寫出了三個式子:①log216=4,②log525=5,③log2 =﹣1.其中正確的是( 。
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點D,射線PD交射線CA于點E.

(1)若點E在線段CA的延長線上,設BP=x,AE=y,求y關于x的函數(shù)關系式,并寫出x的取值范圍.
(2)當BP=2 時,試說明射線CA與⊙P是否相切.
(3)連接PA,若SAPE= SABC , 求BP的長.

查看答案和解析>>

同步練習冊答案