【題目】中,,以的一邊為邊畫等腰三角形,使得它的第三個頂點在的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多可畫幾個?(

A.9B.7C.6D.5

【答案】B

【解析】

先以三個頂點分別為圓心,再以每個頂點所在的較短邊為半徑畫弧,即可確定等腰三角形的第三個頂點;也可以作三邊的垂直平分線確定等腰三角形的第三個頂點即得.

解:①如圖1,以B為圓心,BC長為半徑畫弧,交AB于點D,則BCD就是等腰三角形;

②如圖2,以A為圓心,AC長為半徑畫弧,交AB于點E,則ACE就是等腰三角形;

③如圖3,以C為圓心,BC長為半徑畫弧,交ABM,交AC于點F,則BCMBCF是等腰三角形;④如圖4,作AC的垂直平分線交AB于點H,則ACH就是等腰三角形;⑤如圖5,作AB的垂直平分線交AC于點G,則AGB就是等腰三角形;⑥如圖6,作BC的垂直平分線交ABI,則BCI就是等腰三角形.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C90°,ACBC,AD平分∠CAB,交BC于點DDEAB于點E,且AB6cm,則△DEB的周長為(  )

A.4cmB.6cmC.8cmD.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,以點C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點.

(1)求A,B兩點的坐標(biāo);

(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次環(huán)保知識競賽,每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級的得分依次記為100分、90分、80分、70分,學(xué)校將某年級的一班和二班的成績整理并繪制成統(tǒng)計圖,試根據(jù)以上提供的信息解答下列問題:

1)把一班競賽成績統(tǒng)計圖補充完整;

2)根據(jù)下表填空:a   b   ,c   ;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

a

b

90

二班

876

80

c

3)請從平均數(shù)和中位數(shù)或眾數(shù)中任選兩個對這次競賽成績的結(jié)果進行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點軸正半軸上,以為邊作等邊,其中是方程的解.

1)求點的坐標(biāo).

2)如圖1,點軸正半軸上,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點,求的度數(shù).

3)如圖2,若點軸正半軸上一動點,點在點的右邊,連,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點,當(dāng)點運動時,的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察分析下列方程:

的解是;

的解是

的解是

……

利用它們所蘊含的規(guī)律,則關(guān)于的方程(為正整數(shù))的解是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.

(1)求一次至少購買多少只計算器,才能以最低價購買?

(2)求寫出該文具店一次銷售x(x10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到新函數(shù)圖象,其中原函數(shù)圖象上的兩點A(1,m)、B(4,n)平移后對應(yīng)新函數(shù)圖象上的點分別為點A′、B′.若陰影部分的面積為6,則新函數(shù)的表達式為( 。

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案