已知二次函數(shù)的圖象如圖(1)所示,則直線與反比例函數(shù),在同一坐標(biāo)系內(nèi)的大致圖象為(   )
B
由于拋物線開(kāi)口向下則,對(duì)稱軸在軸負(fù)半軸則,因此,與軸的交點(diǎn)在軸的正半軸則,因此直線過(guò)第二、三、四象限,反比例函數(shù)過(guò)第二、四象限,故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)(﹣1,0),下面的四個(gè)結(jié)論:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正確的結(jié)論是【   】

A.①④      B.①③      C.②④      D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線經(jīng)過(guò)點(diǎn)B(,2),且與x軸交于點(diǎn)A.將拋物線沿x軸作左右平移,記平移后的拋物線為C,其頂點(diǎn)為P.

(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點(diǎn)E,與直線AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F,當(dāng)線段EF∥x軸時(shí),求平移后的拋物線C對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線平移過(guò)程中,將△PAB沿直線AB翻折得到△DAB,點(diǎn)D能否落在拋物線C上?如能,求出此時(shí)拋物線C頂點(diǎn)P的坐標(biāo);如不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與它的對(duì)稱軸相交于點(diǎn),與軸交于,與軸正半軸交于
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)直線軸于是線段上一動(dòng)點(diǎn)(點(diǎn)異于),過(guò)軸交直線,過(guò)軸于,求當(dāng)四邊形的面積等于時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y = ax2+ bx +c的圖象如圖所示, 則下列結(jié)論正確的是 (      )
A.a(chǎn)>0,b<0,c>0B. a<0,b<0,c>0
C.a(chǎn)<0,b>0,c<0D. a<0,b>0,c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,下列結(jié)論正確的是(     )
A.;B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線與軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn)為直徑作過(guò)拋物線上一點(diǎn)的切線切點(diǎn)為并與的切線相交于點(diǎn)連結(jié)并延長(zhǎng)交于點(diǎn)連結(jié)

(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形的面積為求直線的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn),使得四邊形的面積等于的面積?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的圖象經(jīng)過(guò)點(diǎn),則的值為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:二次函數(shù)的圖象都經(jīng)過(guò)軸上兩個(gè)不同的點(diǎn)M、N,則           .

查看答案和解析>>

同步練習(xí)冊(cè)答案