如圖,直線l交兩條平行線AB,CD于點(diǎn)E,F(xiàn),若∠EFD=40°,則圖中等于40°的角的個數(shù)是( 。
分析:由AB∥CD,根據(jù)兩直線平行,同位角相等,即可得∠1=∠EFD=40°,又由對頂角相等,即可得∠1=∠2=∠3=∠EFD=40°.
解答:解:∵AB∥CD,
∴∠1=∠EFD=40°,
∵∠2=∠1,∠3=∠EFD,
∴∠1=∠2=∠3=∠EFD=40°.
∴圖中等于40°的角的個數(shù)是4個.
故選C.
點(diǎn)評:此題考查了平行線的性質(zhì)與對頂角相等的知識.此題比較簡單,注意掌握兩直線平行,同位角相等定理的應(yīng)用,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點(diǎn),弦DE精英家教網(wǎng)⊥AB于點(diǎn)F.請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶(1)一條直線可以把平面分成兩個部分(或區(qū)域),如圖,兩條直線可以把平面分成幾個部分?三條直線可以把平面分成幾個部分?試畫圖說明.
(2)四條直線最多可以把平面分成幾個部分?試畫出示意圖,并說明這四條直線的位置關(guān)系.
(3)平面上有n條直線.每兩條直線都恰好相交,且沒有三條直線交于一點(diǎn),處于這種位置的n條直線分一個平面所成的區(qū)域最多,記為an,試研究an與n之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省中考真題 題型:解答題

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究。
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法)。
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D),請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F,請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(24):3.3 圓周角和圓心角的關(guān)系(解析版) 題型:解答題

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第27章《相似》中考題集(22):27.2 相似三角形(解析版) 題型:解答題

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F.請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案