【題目】如圖,已知二次函數(shù)yax2+bx+ca0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和C0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x1,下列結(jié)論:abc0②4a+2b+c0;③4acb28a;;bc.其中含所有正確結(jié)論的選項(xiàng)是_____

【答案】①③④

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①由拋物線開口向上,則a0

∵對稱軸為x=1

∴可得b0,

∵拋物線與y軸的交點(diǎn)B在(0,﹣2)和C0,﹣1)之間

-2c-1<0,

abc0,①是正確的;

②由點(diǎn)A(-1,0)和對稱軸直線x=1可知:

拋物線與x軸另一個(gè)交點(diǎn)為(3,0)

∴當(dāng)x=2時(shí),y=4a+2b+c0,因此②不正確,

③∵二次函數(shù)y=ax2+bx+c的圖象與y軸的交點(diǎn)在(0-1)的下方,對稱軸在y軸右側(cè),a0,

∴最小值:

,因此③正確;

④∵圖象與x軸交于點(diǎn)A-10)和(3,0),

ax2+bx+c=0的兩根為-13

∴根據(jù)一元二次方程根于系數(shù)關(guān)系可得:,

c=-3a,

-2-3a-1,

a;故④正確;

⑤拋物線過(-1,0

a-b+c=0

即,b=a+c

又∵a0,且

又∵b<0,c<0

bc,因此⑤不正確;

故答案為:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?

(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、BC,已知A(﹣10),C03).

1)求拋物線的表達(dá)式;

2)如圖,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)BCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,ACBD交于點(diǎn)OECD延長線上的一點(diǎn),且CDDE,連結(jié)BE分別交AC,AD于點(diǎn)FG,連結(jié)OG,則下列結(jié)論:①OGAB;②與EGD全等的三角形共有5個(gè);③S四邊形ODGFSABF;④由點(diǎn)A、BD、E構(gòu)成的四邊形是菱形.其中正確的是(  )

A.①④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OAcm,OC8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)用t的式子表示△OPQ的面積S;

(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;

(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線yx 2bxc經(jīng)過BP兩點(diǎn),過線段BP上一動(dòng)點(diǎn)My軸的平行線交拋物線于N,當(dāng)線段MN的長取最大值時(shí),求直線MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老張用400元購買了若干只種兔,老李用440元也購買了相同只數(shù)的種兔,但單價(jià)比老張購買的種兔的單價(jià)貴5元.

1)老張與老李購買的種兔共有多少只?

2)一年后,老張養(yǎng)兔數(shù)比買入種兔數(shù)增加了2只,老李養(yǎng)兔數(shù)比買入種兔數(shù)的2倍少1只,兩人將兔子全部售出,則售價(jià)至少為多少元時(shí),兩人所獲得的總利潤不低于960元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD.過點(diǎn)BBGCD,分別交CD、CA于點(diǎn)EF,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF,給出以下四個(gè)結(jié)論:①;②若點(diǎn)DAB的中點(diǎn),則AFAB;③當(dāng)BC、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則SABC9SBDF,其中正確的結(jié)論序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)點(diǎn)軸上,直線軸交于點(diǎn)

1)求二次函數(shù)的解析式;

2)點(diǎn)是拋物線上的點(diǎn),過點(diǎn)軸的垂線與直線交于點(diǎn),求證:;

3)當(dāng)時(shí)等邊三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案