(2013•綿陽)下列說法正確的是( 。
分析:對角線互相垂直且平分的四邊形是菱形,對角線相等的梯形是等腰梯形,對角線互相平分的四邊形是平行四邊形,對角線相等且互相平分的四邊形是矩形,根據(jù)以上內(nèi)容判斷即可.
解答:解:A、對角線互相垂直且平分的四邊形是菱形,故本選項錯誤;
B、對角線相等的梯形是等腰梯形,故本選項錯誤;
C、對角線互相平分的四邊形是平行四邊形,故本選項錯誤;
D、對角線相等且互相平分的四邊形是矩形,故本選項正確;
故選D.
點評:本題考查了對菱形、矩形、平行四邊形、等腰梯形的判定的應(yīng)用,主要考查學(xué)生的理解能力和辨析能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綿陽)為了從甲、乙兩名選手中選拔一個參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:
 甲、乙射擊成績統(tǒng)計表
平均數(shù) 中位數(shù) 方差 命中10環(huán)的次數(shù)
7
7
7
4
4
0
7
7
7.5
7.5
5.4
5.4
1
甲、乙射擊成績折線圖

(1)請補全上述圖表(請直接在表中填空和補全折線圖);
(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•綿陽)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標(biāo)為(0,-2),交x軸于A、B兩點,其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標(biāo);

(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(biāo)(用含m的代數(shù)式表示);

(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標(biāo);如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川綿陽12分)為了從甲、乙兩名選手中選拔一個參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:

 甲、乙射擊成績統(tǒng)計表

 

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

    

    

0

    

    

    

1

甲、乙射擊成績折線圖

(1)請補全上述圖表(請直接在表中填空和補全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰應(yīng)勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

 

查看答案和解析>>

同步練習(xí)冊答案