【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點(diǎn),延長(zhǎng)AF交⊙O于E,CF=2,AF=3,則EF的長(zhǎng)是

【答案】4
【解析】解:∵AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點(diǎn), ∴CG=GD,CF=FG= CG,
∵CF=2,∴CG=GD=2×2=4,F(xiàn)D=2+4=6,
由相交弦定理得EFAF=CFFD,
即EF= = =4,
故EF的長(zhǎng)是4.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相交弦定理的相關(guān)知識(shí),掌握?qǐng)A內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等;如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng),以及對(duì)垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B兩地相距80km,甲,乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車.圖中DE,OC分別表示甲,乙離開A地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系,根據(jù)圖象得出的下列信息錯(cuò)誤的是( )

A.乙到達(dá)B地時(shí)甲距A地120km.
B.乙出發(fā)1.8小時(shí)被甲追上.
C.甲,乙相距20km時(shí),t為2.4h.
D.甲的速度是乙的速度的 倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=x,ON=x+4,點(diǎn)P是邊OB上的點(diǎn).若使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)A,B兩種鋼筆,若購(gòu)進(jìn)A種鋼筆2支,B種鋼筆3支,共需90元;購(gòu)進(jìn)A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求A、B兩種鋼筆每支各多少元?
(2)若該文具店要購(gòu)進(jìn)A,B兩種鋼筆共90支,總費(fèi)用不超過(guò)1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購(gòu)買方案?
(3)文具店以每支30元的價(jià)格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進(jìn)價(jià)不變的基礎(chǔ)上再購(gòu)進(jìn)一批B種鋼筆,漲價(jià)賣出,經(jīng)統(tǒng)計(jì),B種鋼筆售價(jià)為30元時(shí),每月可賣68支;每漲價(jià)1元,每月將少賣4支,設(shè)文具店將新購(gòu)進(jìn)的B種鋼筆每支漲價(jià)a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價(jià)定為多少元時(shí),每月獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年是第39個(gè)植樹節(jié),我們提出了“追求綠色時(shí)尚,走向綠色文明”的倡議.某校為積極響應(yīng)這一倡議,立即在八、九年級(jí)開展征文活動(dòng),校團(tuán)委對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿3篇的班級(jí)個(gè)數(shù)所對(duì)應(yīng)的扇形的圓心角的度數(shù).
(2)求該校八、九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)最多的4個(gè)班中,八、九年級(jí)各有兩個(gè)班,校團(tuán)委準(zhǔn)備從這四個(gè)班中選出兩個(gè)班參加全校的表彰會(huì),請(qǐng)你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB.
(1)求線段CD的長(zhǎng);
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長(zhǎng);
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案