如圖,AB是圓錐底面圓的直徑,SO是高,OA=3cm,SO=4cm,求圓錐展開(kāi)圖的面積.
分析:首先根據(jù)勾股定理求得母線長(zhǎng),利用圓的周長(zhǎng)公式求得底面周長(zhǎng),即扇形的弧長(zhǎng),然后利用扇形的面積公式即可求解.
解答:解:在直角△OAS中,AS=
OA2+SO2
=5cm,
底面周長(zhǎng)是:2π×3=6πcm,
則圓錐展開(kāi)圖的面積是:
1
2
×6π×5=15πcm2
點(diǎn)評(píng):正確理解圓錐的側(cè)面展開(kāi)圖與原來(lái)的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題探究:
(1)如圖①所示是一個(gè)半徑為
3
,高為4的圓柱體和它的側(cè)面展開(kāi)圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開(kāi),它的側(cè)面展開(kāi)圖如圖①中的矩形ABB′A′,則螞蟻爬行的最短路程即為線段AB′的長(zhǎng));
(2)如圖②所示是一個(gè)底面半徑為
2
3
,母線長(zhǎng)為4的圓錐和它的側(cè)面展開(kāi)圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程;
(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB是圓錐底面圓的直徑,SO是高,OA=3cm,SO=4cm,求圓錐展開(kāi)圖的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》常考題集(38):3.8 圓錐的側(cè)面積(解析版) 題型:解答題

問(wèn)題探究:
(1)如圖①所示是一個(gè)半徑為,高為4的圓柱體和它的側(cè)面展開(kāi)圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開(kāi),它的側(cè)面展開(kāi)圖如圖①中的矩形ABB′A′,則螞蟻爬行的最短路程即為線段AB′的長(zhǎng));
(2)如圖②所示是一個(gè)底面半徑為,母線長(zhǎng)為4的圓錐和它的側(cè)面展開(kāi)圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程;
(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓的基本性質(zhì)》中考題集(40):3.6 圓錐的側(cè)面積和全面積(解析版) 題型:解答題

問(wèn)題探究:
(1)如圖①所示是一個(gè)半徑為,高為4的圓柱體和它的側(cè)面展開(kāi)圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開(kāi),它的側(cè)面展開(kāi)圖如圖①中的矩形ABB′A′,則螞蟻爬行的最短路程即為線段AB′的長(zhǎng));
(2)如圖②所示是一個(gè)底面半徑為,母線長(zhǎng)為4的圓錐和它的側(cè)面展開(kāi)圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程;
(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.

查看答案和解析>>

同步練習(xí)冊(cè)答案