10.對(duì)于鈍角α,定義它的三角函數(shù)值如下:sinα=sin(180°-α),cosα=-cos(180°-α).求sin120°,cos120°,sin150°的值.

分析 根據(jù)新定義、特殊角的三角函數(shù)值計(jì)算即可.

解答 解:sin120°=sin(180°-120°)=sin60°=$\frac{\sqrt{3}}{2}$;
cos120°=-cos(180°-120°)=-cos60°=-$\frac{1}{2}$;
sin150°=sin(180°-150°)=sin30°=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查的是特殊角的三角函數(shù)值,正確理解新定義、熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖放置一個(gè)水管三叉接頭,則其俯視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,已知拋物線(xiàn)y=-x2-4x+5交x軸于點(diǎn)A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),連接AD.
(1)求直線(xiàn)AD的解析式.
(2)點(diǎn)E(m,0)、F(m+1,0)為x軸上兩點(diǎn),其中(-5<m<-3.5)EE′、FF′分別平行于y軸,交拋物線(xiàn)于點(diǎn)E′和F′,交AD于點(diǎn)M、N,當(dāng)ME′+NF′的值最大時(shí),在y軸上找一點(diǎn)R,使得|RE′-RF′|值最大,請(qǐng)求出點(diǎn)R的坐標(biāo)及|RE′-RF′|的最大值.
(3)如圖2,在拋物線(xiàn)上是否存在點(diǎn)P,使得△PAC是以AC為底邊的等腰三角形,若存在,請(qǐng)出點(diǎn)P的坐標(biāo)及△PAC的面積,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)解方程:x2-4x+1=0
(2)計(jì)算:22-tan60°-(π-3.14)0+$\frac{1}{{2-\sqrt{3}}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲、乙兩家超市以相同的價(jià)格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)買(mǎi)商品超出了300元以后,超出部分按原價(jià)8折優(yōu)惠;在乙超市累計(jì)購(gòu)買(mǎi)商品超出200元之后,超出部分按原價(jià)8.5折優(yōu)惠,設(shè)顧客預(yù)計(jì)累計(jì)購(gòu)物x元(x>300)
(1)分別列出到甲、乙超市購(gòu)買(mǎi)商品所需費(fèi)用(用含x的代數(shù)式表示);
(2)當(dāng)x=400元時(shí),到哪家超市購(gòu)物優(yōu)惠.
(3)當(dāng)x為何值時(shí),兩家超市購(gòu)物所花實(shí)際錢(qián)數(shù)相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,幾個(gè)棱長(zhǎng)為1的小正方體在地板上堆積成一個(gè)模型,表面噴涂紅色染料,那么染有紅色染料的模型的表面積為42.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)|$\sqrt{3}$-2|+(-2)2-$\sqrt{4}$+$\root{3}{-216}$
(2)解方程(2x-1)2-16=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如下表,從左到右在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意四個(gè)相鄰格子中所填的整數(shù)之和都相等,則第2016個(gè)格子中的數(shù)為-4.
-13abc3-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.計(jì)算:
(1)$2\sqrt{2}×\frac{{\sqrt{2}}}{2}-{(π-3)^0}$
(2)$\sqrt{4}+\left|{-4}\right|+{(\frac{1}{2})^{-1}}$
(3)$-{(-2)^0}+\sqrt{48}÷\sqrt{3}$
(4)${(-2)^{-1}}+\sqrt{\frac{1}{4}}+\sqrt{32}-\sqrt{18}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案