分析 要求EM+CM的最小值,需考慮通過作輔助線轉(zhuǎn)化EM,CM的值,從而找出其最小值求解.
解答 解:連接BE,與AD交于點(diǎn)M.則BE就是EM+CM的最小值,
過B作BN⊥AC于N,
∵△ABC是等邊三角形,
∴AN=$\frac{1}{2}$AC,
∵等邊△ABC的邊長為4,
∴AC=4,∵AE=1,
∴NE=1,BN=$\frac{\sqrt{3}}{2}$AB=2$\sqrt{3}$,
∴BE=$\sqrt{B{N}^{2}+N{E}^{2}}$=$\sqrt{(2\sqrt{3})^{2}+{1}^{2}}$=$\sqrt{13}$,
∴EM+CM的最小值為$\sqrt{13}$,
故答案為:$\sqrt{13}$.
點(diǎn)評 此題主要考查了等邊三角形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用.得出M點(diǎn)位置是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | m | B. | m+1 | C. | m+2 | D. | m+3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 6 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com