15.下列各題中正確的是(  )
A.由7x=4x-3移項(xiàng)得7x-4x=3
B.由$\frac{2x-1}{3}=1+\frac{x-3}{2}$去分母得2(2x-1)=1+3(x-3)
C.由2(2x-1)-3(x-3)=1去括號得4x-2-3x-9=1
D.由2x+1=x+7移項(xiàng),合并同類項(xiàng)得x=6

分析 根據(jù)等式的基本性質(zhì)和去括號法則逐個判斷即可.

解答 解:A、7x=4x-3移項(xiàng)得7x-4x=-3,故本選項(xiàng)錯誤;
B、由$\frac{2x-1}{3}=1+\frac{x-3}{2}$去分母得2(2x-1)=6+3(x-3),故本選項(xiàng)錯誤;
C、由2(2x-1)-3(x-3)=1去括號得4x-2-3x+9=1,故本選項(xiàng)錯誤;
D、2x+1=x+7,
2x-x=7-1,
x=6,故本選項(xiàng)正確;
故選D.

點(diǎn)評 本題考查了解一元一次方程的應(yīng)用,能正確根據(jù)等式的基本性質(zhì)進(jìn)行變形是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC≌△DEF,在△ABC中,∠ACB=90°,BC=3,AC=4.現(xiàn)將這兩個全等的直角三角形按圖①所示位置擺放,點(diǎn)A與點(diǎn)E重合,直角邊AC與EF在同一直線上,如圖②,現(xiàn)固定△ABC,將△DEF沿射線AC方向平行移動,運(yùn)動過程中,直線DE與直線AB交于點(diǎn)M,點(diǎn)N是線段AC的中點(diǎn),當(dāng)點(diǎn)E運(yùn)動到點(diǎn)N時停止運(yùn)動.設(shè)AM=x.

(1)如圖①,求點(diǎn)A與點(diǎn)E重合時兩三角形重疊部分的面積;
(2)在△DEF運(yùn)動過程中,△AMN能不能是以MN為腰的等腰三角形?若不能,請說明理由;若能,求出對應(yīng)的x的值;
(3)在△DEF運(yùn)動過程中,設(shè)兩個三角形重疊部分面積為y,直接寫出y與x的函數(shù)解析式及對應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直線y=-$\frac{1}{2}$x+1與y軸交于點(diǎn)E,與拋物線y=ax2-bx-3交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線A,B下方的拋物線上一動點(diǎn)(不與A,B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式及cos∠CPD的值;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①是否存在點(diǎn)P,使AD=BD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
②用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
③連結(jié)PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為3:4?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.若關(guān)于x的一元二次方程x2+px-6=0的一個根為3,則p的值為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.計算
(1)(-6)2×[-$\frac{5}{12}$+(-$\frac{4}{9}$)]
(2)0-23÷(-4)3-$\frac{1}{8}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.先化簡,再求值:3(3a2-2ab)-[a2-2(5ab-4a2+1)-3ab],其中a=-3,b=$\frac{1}{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,正方形ABCD的邊長為2,點(diǎn)E是AB的中點(diǎn),MN=1,線段MN的兩端在CB、CD上滑動,當(dāng)CM為多少時,△AED與以M、N、C為頂點(diǎn)的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{2x-4}$的定義域是x≠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.(1)解方程:x(x-3)-4(3-x)=0;
(2)利用配方法求拋物線y=-x2+4x-3的對稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案