【題目】圖①為平地上一幢建筑物與鐵塔圖,圖②為其示意圖.建筑物AB與鐵塔CD都垂直于地面,BD=20m,在A點測得D點的俯角為45°,測得C點的仰角為58°.求鐵塔CD的高度.(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
【答案】解:如圖,過點A作AE⊥CD,垂足為E,
則四邊形ABDE矩形,
∵BD=20m,在A點測得D點的俯角為45°,在測得C點的仰角為58°,
∴∠ADB=∠EAD=45°,
∴AB=ED=BD=20m,
在Rt△AEC中,tan∠CAE= ,
∴tan58°= = ,
∴CE=20 tan58°=20×1.60=32,
∴CD=CE+ED=32+20=52米.
答:鐵塔CD的高度為52米.
【解析】先過點A作AE⊥CD,垂足為E,則四邊形ABDE矩形,根據(jù)∠ADB=∠EAD=45°,可得AB=ED=BD=20m,在Rt△AEC中,根據(jù)正切定義得出tan∠CAE,求得CE的長,進而得到鐵塔CD的高度.
【考點精析】掌握關(guān)于仰角俯角問題是解答本題的根本,需要知道仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過點P(2,2)作x軸的平行線交y軸于點A,交雙曲線y=(x>0)于點N,作PM⊥AN交雙曲線y=(x>0)于點M,連接AM,若PN=4.
(1)求k的值;
(2)設(shè)直線MN解析式為y=ax+b,求不等式ax+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個正整數(shù)a可以表示為連續(xù)的兩個奇數(shù)的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我們則稱形如8,16,24這樣的正整數(shù)a為“奇特數(shù)”.
(1)請寫出最小的三位“奇特數(shù)”,并表示成連續(xù)的兩個奇數(shù)的平方差的形式;
(2)求證:任意一個“奇特數(shù)”都是8的倍數(shù);
(3)若一個三位數(shù)b為“奇特數(shù)”,其百位和個位上的數(shù)字相同,十位上的數(shù)字比個位上的數(shù)字大m(m為正整數(shù)),求滿足條件的所有三位“奇特數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,AC平分∠DAB,∠1=∠2,試說明AB與CD的位置關(guān)系,并予以證明;
(2)如圖,AB∥CD,AB的下方兩點E、F滿足:BF平分∠ABE、DF平分∠CDE,若∠DFB=20°,∠CDE=70°,求∠ABE的度數(shù);
(3)在前面的條件下,若P是BE上一點,G是CD上任一點,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列結(jié)論:①∠DGP-∠MGN的值不變;②∠MGN的度數(shù)不變,可以證明只有一個是正確的,請你作出正確的選擇并求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】細觀察,找規(guī)律.
下列各圖中的與平行.
圖中的______ 度,
圖中的______ 度,
圖中的______ 度,
圖中的______ 度,
,
第個圖中的______ 度
第n個圖中的______
請你證明圖的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),反比例函數(shù)的圖象與直線的交點A、B均在格點上,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:
(1)求這個反比例函數(shù)的解析式;
(2)若點C在已知的反比例函數(shù)的圖象上,△ABC是以AB為底的等腰三角形,請寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(0,0),B(2,0),點C在y軸上,且S△ABC=3.
(1)求點C的坐標;
(2)以點A、B、C為頂點,作長方形,試寫出該長方形第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在中,F(xiàn)G∥EB,,那么等于多少度?為什么?
解:=_______________.
因為∥(______________________),
所以(_________________________________).
因為(已知),
所以(_____________________).
所以DE∥BC(_____________________).
所以=_________(____________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com