【題目】如圖1,Rt△ABC中,∠ABC=90°,BC<AB<2BC.在AB邊上取一點(diǎn)M,使AM=BC,過點(diǎn)A作AE⊥AB且AE=BM,連接EC,再過點(diǎn)A作AN∥EC,交直線CM、CB于點(diǎn)F、N.
(1)證明:∠AFM=45°;
(2)若將題中的條件“BC<AB<2BC”改為“AB>2BC”,其他條件不變,請你在圖2的位置上畫出圖形,(1)中的結(jié)論是否仍然成立?如果成立,請說明理由;如果不成立,請猜想∠AFM的度數(shù),并說明理由.
【答案】(1)證明見解析;(2)不成立.∠AFM=135°.
【解析】試題分析:(1)連接EM,根據(jù)AE⊥AB,AE=MB,AM=CB,可求出△AEM≌△BMC;根據(jù)直角三角形的性質(zhì)可知△EMC是等腰直角三角形;再結(jié)合平行線的性質(zhì)可知∠AFM=45度.
(2)根據(jù)題意畫出圖形,再用(1)中方法證明∠AFM=45°不成立.
試題解析:證明:(1)連接EM.∵AE⊥AB,∴∠EAM=∠B=90°.
∵AE=MB,AM=CB,∴△AEM≌△BMC,∴∠AEM=∠BMC,EM=MC.
∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠MCE=45°.∵AN∥CE,∴∠AFM=∠MCE=45°.
解:(2)畫出圖②.
不成立.∠AFM=135°.
連接ME.前半部分證明方法與(1)同,∴∠MCE=45°.
∵AN∥CE,∴∠AFM+∠MCE=180°,∴∠AFM=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用棋子擺成的“上”字.
(1)依照此規(guī)律,第4個(gè)圖形需要黑子、白子各多少枚?
(2)按照這樣的規(guī)律擺下去,擺成第n個(gè)“上”字需要黑子、白子各多少枚?
(3)請?zhí)骄康趲讉(gè)“上”字圖形白子總數(shù)比黑子總數(shù)多15枚.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線l:y=﹣x+2與x軸交于點(diǎn)A、與y軸交于點(diǎn)B.拋物線y=ax2+bx+c(a≠0)經(jīng)過O、A兩點(diǎn),與直線l交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為﹣1.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P是位于直線l下方拋物線上的一個(gè)動(dòng)點(diǎn),且不與點(diǎn)A、點(diǎn)C重合,連接PA、PC.設(shè)△PAC的面積為S,求當(dāng)S取得最大值時(shí)點(diǎn)P的坐標(biāo),并求S的最大值;
(3)如圖2,設(shè)拋物線的頂點(diǎn)為D,連接AD、BD.點(diǎn)E是對(duì)稱軸m上一點(diǎn),F(xiàn)是拋物線上一點(diǎn),請直接寫出當(dāng)△DEF與△ABD相似時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)5000名九年級(jí)學(xué)生體育成績狀況,隨機(jī)抽取了若干名學(xué)生進(jìn)行測試,將成績按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:
(1)在這次抽樣調(diào)查中,一共抽取了______名學(xué)生;
(2)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請估計(jì)該地區(qū)九年級(jí)學(xué)生體育成績?yōu)?/span>B級(jí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是Δ的一個(gè)外角,我們?nèi)菀鬃C明=,即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
嘗試探究:
()如圖2,與分別為的兩個(gè)外角,則 (橫線上填 >、< 或=)
初步應(yīng)用:
()如圖3,在紙片中剪去,得到四邊形,,則 .
()解決問題:如圖4,在中,、分別平分外角、,與有何數(shù)量關(guān)系?請利用上面的結(jié)論直接寫出答案 .
()如圖5,在四邊形中,、分別平分外角、,請利用上面的結(jié)論探究與、的數(shù)量關(guān)系.
圖1 圖2 圖3
圖4 圖5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( )
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E,F分別在三邊上,且BE=CD,BD=CF,G為EF的中點(diǎn).
(1)若∠A=40°,求∠B的度數(shù);
(2)試說明:DG垂直平分EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB延長線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD= ______ °時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,對(duì)角線、交于點(diǎn).將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn)分別交、于點(diǎn)、.
()在旋轉(zhuǎn)過程中,線段與的數(shù)量關(guān)系是__________.
()如圖,若,當(dāng)旋轉(zhuǎn)角至少為__________時(shí),四邊形是平行四邊形,并證明此時(shí)的四邊形是是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com