如圖,在平行四邊形ABCD中,點(diǎn)E、F分別在AD、BC邊上,且AE=CF.求證:
(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
證明見(jiàn)解析.

試題分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等,對(duì)角相等,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;
(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對(duì)邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF,然后根據(jù)對(duì)邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.
試題解析:(1)∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴AD﹣AE=BC﹣CF,
即DE=BF,
∴四邊形BFDE是平行四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF。
(1)那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)明理由。
(2)在(1)的前提下△ABC滿足什么條件,四邊形AECF是正方形?(直接寫(xiě)出答案,無(wú)需證明)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形OABC的A點(diǎn)在x軸上,C點(diǎn)在y軸上,,
(1)在BC邊上求作一點(diǎn)E,使OE=OA;(保留作圖痕跡,不寫(xiě)畫(huà)法)
(2)求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于半徑為r的⊙P及一個(gè)正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點(diǎn),則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(2,4),頂點(diǎn)C、D在x軸上,且點(diǎn)C在點(diǎn)D的左側(cè).
(1)當(dāng)r=時(shí),
①在P1(0,-3),P2(4,6),P3,2)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;
②若點(diǎn)P在直線上,且⊙P是正方形ABCD的“等距圓”,則點(diǎn)P的坐標(biāo)為_(kāi)______________;
(2)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.
①若⊙P同時(shí)為上述兩個(gè)正方形的“等距圓”,且與BC所在直線相切,求⊙P 在y軸上截得的弦長(zhǎng);
②將正方形ABCD繞著點(diǎn)D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,線段HF上沒(méi)有一個(gè)點(diǎn)能成為它的“等距圓”的圓心,則r的取值范圍是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,正六邊形ABCDEF的邊長(zhǎng)為a,P是BC邊上一動(dòng)點(diǎn),過(guò)P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          ;
②求證:PM+PN=3a;
(2)如圖2,點(diǎn)O是AD的中點(diǎn),連接OM、ON,求證:OM=ON;
(3)如圖3,點(diǎn)O是AD的中點(diǎn),OG平分∠MON,判斷四邊形OMGN是否為特殊四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,求證:S四邊形ABCD=SABF(S表示面積)

問(wèn)題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門(mén)計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(,)、(4、2),過(guò)點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,AC=BC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( 。

A.矩形       B.菱形         C.正方形      D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,BC=8,則等腰梯形ABCD的周長(zhǎng)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

順次連接四邊形四邊中點(diǎn)所組成的四邊形是菱形,則原四邊形為       (     )
A.平行四邊形B.菱形C.對(duì)角線相等的四邊形D.對(duì)角線垂直的四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案