【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM

①依題意將圖2補全;

②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可)

【答案】(1)40°;(2)作圖見解析;證明見解析

【解析】

試題分析:(1)根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補角的定義得到∠APB=∠AQC,根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;

(2)根據(jù)要求作出圖形,如圖2;

根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補角的定義得到∠APB=∠AQC,由點Q關(guān)于直線AC的對稱點為M,得到AQ=AM,∠OAC=∠MAC,等量代換得到∠MAC=∠BAP,推出△APM是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得到結(jié)論.

試題解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等邊三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;

(2)如圖2

∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等邊三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵點Q關(guān)于直線AC的對稱點為M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等邊三角形,∴AP=PM.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:

(1)線段BE的長;

(2)∠ECB的余切值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,若點A(﹣3,4)關(guān)于原點對稱點是B,則點B的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣4x+4=0的根的情況是(
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.無實數(shù)根
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣4﹣5=_____,(﹣1)2017+(﹣1)2018=____ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在一條東西向的雙軌鐵路上迎面駛來一快一慢兩列火車,快車長AB=2(單位長度),慢車長CD=4(單位長度),設(shè)正在行駛途中的某一時刻,如圖,以兩車之間的某點O為原點,取向右方向為正方向畫數(shù)軸,此時快車頭A在數(shù)軸上表示的數(shù)是a,慢車頭C在數(shù)軸上表示的數(shù)是c,且|a+8|與(c﹣162互為相反數(shù).

溫馨提示:忽略兩輛火車的車身及雙鐵軌的寬度.

1)求此時刻快車頭A與慢車頭C之間相距 單位長度.

2)從此時刻開始,若快車AB6個單位長度/秒的速度向右勻速繼續(xù)行駛,同時慢車CD2個單位長度/秒的速度向左勻速繼續(xù)行駛,再行駛 秒兩列火車的車頭A、C相距8個單位長度.

3)在(2)中快車、慢車速度不變的情況下,此時在快車AB上有一位愛動腦筋的七年級學(xué)生乘客P,他發(fā)現(xiàn)行駛中有一段時間t秒鐘內(nèi),他的位置P到兩列火車頭A、C的距離和加上到兩列火車尾BD的距離和是一個不變的值(即PA+PC+PB+PD為定值).則這段時間t 秒,定值是 單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了打造森林城市,樹立城市新地標,實現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量“望月閣”的高度,來檢驗自己掌握知識和運用知識的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應(yīng)位置為點C,鏡子不動,小亮看著鏡面上的標記,他來回走動,走到點D時,看到“望月閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進行了第二次測量,方法如下:如圖,小亮從D點沿DM方向走了16米,到達“望月閣”影子的末端F點處,此時,測得小亮身高FG的影長FH=2.5米,F(xiàn)G=1.65米

如圖,已知ABBM,EDBM,GFBM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盛印染廠生產(chǎn)某種產(chǎn)品,每產(chǎn)品廠價為30元,成本價為20(不含污水處理部分費用)在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計了兩種對污水進行處理的方案并準備實施

方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用原料費用2元,并且每月排污設(shè)備損耗等其它各項開支27000元

方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費

(1)若實施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?

(2)你認為該工廠應(yīng)如何選擇污水處理方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E是BC邊上一點,只用一把無刻度的直尺在AD邊上作點F,使得DF=BE.

(1)作出滿足題意的點F,簡要說明你的作圖過程;

(2)依據(jù)你的作圖,證明:DF=BE.

查看答案和解析>>

同步練習(xí)冊答案