(2004•山西)已知:如圖,⊙O1與⊙O2相交于點(diǎn)A和點(diǎn)B,且點(diǎn)O1在⊙O2上,過(guò)點(diǎn)A的直線CD分別與⊙O1、⊙O2交于點(diǎn)C、D,過(guò)點(diǎn)B的直線EF分別與⊙O1、⊙O2交于點(diǎn)E、F,⊙O2的弦O1D交AB于P.
求證:(1)CE∥DF;
(2)O1A2=O1P•O1D.

【答案】分析:(1)要證明CE∥DF,根據(jù)平行線的判定,證明同旁內(nèi)角互補(bǔ)即可,可以借助圓的內(nèi)接四邊形角與角的關(guān)系;
(2)欲證O1A2=O1P•O1D,可證△AO1P∽△DO1A得出.
解答:證明:(1)∵四邊形ABEC是⊙O1的內(nèi)接四邊形,
∴∠ABE+∠C=180°.
又四邊形ABFD是⊙O2的內(nèi)接四邊形,
∴∠ABE=∠ADF.
∴∠C+∠ADF=180°.
∴CE∥DF;

(2)連接O1B,則O1A=O1B.
∴∠O1AB=∠O1BA.
又∵∠O1BA=∠O1DA,
∴∠O1AP=∠O1DA.
又∵∠AO1P=∠DO1A,
∴△AO1P∽△DO1A.

∴O1A2=O1D•O1P.
點(diǎn)評(píng):考查了平行線的判定,圓的內(nèi)接四邊形的性質(zhì),圓周角定理.
能夠把線段乘積的形式轉(zhuǎn)化為比例的形式,通過(guò)相似三角形的性質(zhì)得出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•山西)已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)的解析式,并在下面的坐標(biāo)系中畫(huà)出該二次函數(shù)的圖象;
(2)設(shè)D為線段OC上的一點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•山西)已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)的解析式,并在下面的坐標(biāo)系中畫(huà)出該二次函數(shù)的圖象;
(2)設(shè)D為線段OC上的一點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2004•山西)已知:如圖,⊙O1與⊙O2相交于點(diǎn)A和點(diǎn)B,且點(diǎn)O1在⊙O2上,過(guò)點(diǎn)A的直線CD分別與⊙O1、⊙O2交于點(diǎn)C、D,過(guò)點(diǎn)B的直線EF分別與⊙O1、⊙O2交于點(diǎn)E、F,⊙O2的弦O1D交AB于P.
求證:(1)CE∥DF;
(2)O1A2=O1P•O1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《整式》(03)(解析版) 題型:填空題

(2004•山西)已知x+y=1,則x2+xy+y2=   

查看答案和解析>>

同步練習(xí)冊(cè)答案