【題目】為了解中學(xué)生獲取信息的主要渠道,設(shè)置“A:報(bào)紙,B:電視,C:網(wǎng)絡(luò),D:身邊的人,E:其他”五個選項(xiàng)(五項(xiàng)中必選且只能選一項(xiàng))的調(diào)查問卷,先隨機(jī)抽取50名中學(xué)生進(jìn)行該問卷調(diào)查,根據(jù)調(diào)查的結(jié)果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )
A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個數(shù)字中一個),每個頂點(diǎn)朝上的機(jī)會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD 面上的概率為 ;若存在,指出其中的一種平移方式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】煤氣公司一工人檢修一條長540米的煤氣管道,計(jì)劃用若干小時(shí)完成,在實(shí)際檢修過程中,每小時(shí)檢修的管道長度是原計(jì)劃的1.5倍,結(jié)果提前3小時(shí)完成任務(wù),求該工人原計(jì)劃每小時(shí)檢修煤氣管道多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(b,0),且b<0,點(diǎn)C,D分別是OA,AB的中點(diǎn),△AOB的外角平分線與CD的延長線交于點(diǎn)E.
(1)求證:∠DAO=∠DOA;
(2)①若b=-8,求CE的長;
②若CE=+1,則b=________.
(3)是否存在這樣的b值,使得四邊形OBED為平行四邊形?若存在,請求出此時(shí)四邊形OBED對角線的交點(diǎn)坐標(biāo);若不存在,請說明理由.
(4)直線AE與x軸交于點(diǎn)F,請用含b的式子直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“ 六一”兒童節(jié)前夕,蘄黃縣教育局準(zhǔn)備給留守兒童贈送一批學(xué)習(xí)用品,先對浠泉鎮(zhèn)浠泉小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6 名,7 名,8 名,10 名,12 名這五種情形,并將統(tǒng)計(jì)結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)上述統(tǒng)計(jì)圖,解答下列問題:
(1)該校有多少個班級?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校平均每班有多少名留守兒童?留守兒童人數(shù)的眾數(shù)是多少?
(3)若該鎮(zhèn)所有小學(xué)共有60 個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,圓D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.
(1)D點(diǎn)的坐標(biāo)是 , 圓的半徑為;
(2)求經(jīng)過C、A、B三點(diǎn)的拋物線所對應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)拋物線的頂點(diǎn)為F,試證明直線AF與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點(diǎn)N,使△CBN面積最大,最大面積是多少?并求出N點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)﹣20+8﹣(﹣1)+(﹣4)
(2)×(﹣)2÷(﹣0.5)3
(3)4﹣6÷(﹣2)×(﹣)
(4)(﹣36)×(﹣+﹣)
(5)(﹣2)2×0.5﹣(﹣1.6)2÷(﹣2)3
(6)﹣14÷(﹣4)﹣(﹣)2×(﹣3)+|(﹣1)2﹣2|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com