【題目】你會(huì)求(a1)(a2012+a2011+a2010++a2+a+1)的值嗎?這個(gè)問題看上去很復(fù)雜,我們可以先考慮簡單的情況,通過計(jì)算,探索規(guī)律:

,

,

1)由上面的規(guī)律我們可以大膽猜想,得到(a1)(a2014+a2013+a2012++a2+a+1)=   

利用上面的結(jié)論,求:

222014+22013+22012++22+2+1的值是   

3)求52014+52013+52012++52+5+1的值.

【答案】1a20151;(2220151;(3

【解析】

1)根據(jù)已知算式得出規(guī)律,即可得出答案.

2)先變形,再根據(jù)規(guī)律得出答案即可.

3)先變形,再根據(jù)規(guī)律得出答案即可.

1)由上面的規(guī)律我們可以大膽猜想,(a1)(a2012+a2011+a2010++a2+a+1)=a20151,

故答案為:a20151;

222014+22013+22012++22+2+1

=(21)×(22014+22013+22012++22+2+1

220151

故答案為:220151;

352014+52013+52012++52+5+1

×(51)×(52014+52013+52012++52+5+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一副分別含有30°和45°角的兩個(gè)直角三角板,拼成如圖所示,其中∠C=90°,∠B=45°,∠E=30°,則∠BFD的度數(shù)是(
A.10°
B.15°
C.25°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)觀察,找規(guī)律

下列各圖中的MA1NAn平行.

1)圖①中的∠A1+A2= ______ 度,

圖②中的∠A1+A2+A3= ______ 度,

圖③中的∠A1+A2+A3+A4= ______ 度,

圖④中的∠A1+A2+A3+A4+A5= ______ 度,

,

第⑩個(gè)圖中的∠A1+A2+A3+…+A11= ______

2)第n個(gè)圖中的∠A1+A2+A3+…+An+1= ______

3)請(qǐng)你證明圖②的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=5.

(1)求m,n的值并寫出反比例函數(shù)的表達(dá)式;
(2)連接AB,E是線段AB上一點(diǎn),過點(diǎn)E作x軸的垂線,交反比例函數(shù)圖象于點(diǎn)F,若EF= AD,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,P,Q分別是BCAC上的點(diǎn),PRAB,PSAC,垂足分別是R,S,AQ=PQ,PR=PS,下面三個(gè)結(jié)淪:AS=AR:②QPAR;③△BRP≌△CSP.其中正確的是( )

A. ①③ B. ②③ C. ①② D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知BCOA, B=∠A=120°.

1)證明:OBAC;

2)如圖2所示,若點(diǎn)E,FBC上,且∠FOC=AOC,OE平分∠BOF,求∠EOC的度數(shù).

3)在(2)的條件下,若左右平移AC,如圖3所示,那么∠OCB∶∠OFB的比值是否隨之發(fā)生變化?若變化,請(qǐng)說明理由;若不變化,請(qǐng)求出這個(gè)比值.

4)在(2)和(3)的條件下,當(dāng)∠OEB=OCA時(shí),求∠OCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,按以下步驟作圖:
①以C為圓心,以適當(dāng)長為半徑畫弧交AC于E,交BC于F.
②分別以E,F(xiàn)為圓心,以大于 EF的長為半徑作弧,兩弧相交于P;
③作射線CP交AB于點(diǎn)D,
若AC=3,BC=4,則△ACD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

已知:如圖,,

求證:

證明:∵,(已知)

,(

又∵,(已知)

______,(內(nèi)錯(cuò)角相等,兩直線平行)

_______,(

.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在直線l上,點(diǎn)Q沿著直線l以3厘米/秒的速度由點(diǎn)A向右運(yùn)動(dòng),以AQ為邊作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= ,點(diǎn)C在點(diǎn)Q右側(cè),CQ=1厘米,過點(diǎn)C作直線m⊥l,過△ABQ的外接圓圓心O作OD⊥m于點(diǎn)D,交AB右側(cè)的圓弧于點(diǎn)E.在射線CD上取點(diǎn)F,使DF= CD,以DE、DF為鄰邊作矩形DEGF.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)直接用含t的代數(shù)式表示BQ、DF;
(2)當(dāng)0<t<1時(shí),求矩形DEGF的最大面積;
(3)點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中,當(dāng)矩形DEGF為正方形時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊答案