精英家教網 > 初中數學 > 題目詳情

由兩個全等三角形用各種不同的方法拼成四邊形,在這些拼成的四邊形中是平行四邊形的個數是(  ).

    A.4個     B.3個      C.2個     D.1個

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

27、我們約定,若一個三角形(記為△A1)是由另一個三角形(記為△A)通過一次平移,或繞其任一邊的中點旋轉180°得到的,則稱△A1是由△A復制的.以下的操作中每一個三角形只可以復制一次,復制過程可以一直進行下去.如圖1是由△A復制出△A1,又由△A1復制出△A2,再由△A2復制出△A3,形成了一個大三角形,記作△B.以下各題中的復制均是由△A開始的,由復制形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
(1)圖1中標出的是一種可能的復制結果,它用到
1
次平移,
2
次旋轉.小明發(fā)現(xiàn)△B∽△A,其相似比為
2:1
.若由復制形成的△C的一條邊上有11個小三角形(指有一條邊在該邊上的小三角形),則△C中含有
121
個小三角形;
(2)若△A是正三角形,你認為通過復制能形成的正多邊形是
正三邊形、正六邊形
;
(3)在復制形成四邊形的過程中,小明用到了兩次平移一次旋轉,你能用兩次旋轉一次平移復制形成一個四邊形嗎?如果能,請在圖2的方框內畫出草圖,并仿照圖1作出標記;如果不能,請說明理由;
(4)圖3是正五邊形EFGHI,其中心是O,連接O點與各頂點.將其中的一個三角形記為△A,小明認為正五邊形EFGHI是由復制形成的一種結果,你認為他的說法對嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

22、我們約定,若一個三角形(記為△A1)是由另一個三角形(記為△A)通過一次平移,或繞其任一邊的中點旋轉180°得到的,則稱△A1是由△A復制的.以下的操作中每一個三角形只可以復制一次,復制過程可以一直進行下去.如圖1,由△A復制出△A1,又由△A1復制出△A2,再由△A2復制出△A3,形成了一個大三角形,記作△B.以下各題中的復制均是由△A開始的,通過復制形成的多邊形中的任意相鄰兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
(1)圖1中標出的是一種可能的復制結果,小明發(fā)現(xiàn)△A∽△B,其相似比為
1:2
.在圖1的基礎上繼續(xù)復制下去得到△C,若△C的一條邊上恰有11個小三角形(指有一條邊在該邊上的小三角形),則△C中含有
121
個小三角形;
(2)若△A是正三角形,你認為通過復制能形成的正多邊形是
正三角形或正六邊形
;
(3)請你用兩次旋轉和一次平移復制形成一個四邊形,在圖2的方框內畫出草圖,并仿照圖1作出標記.

查看答案和解析>>

科目:初中數學 來源:三點一測叢書九年級數學上 題型:059

全等變換

  拿一張紙對折后,剪成兩個全等的三角形,把這兩個三角形一起放到圖中△ABC的位置上.試一試,如果其中一個三角形不動,怎樣移動另一個三角形,能夠得到圖中的各圖形:

  通過實際操作可以知道:(1)把△ABC沿直線BC移動線段BC那樣長的距離,可以變到△ECD的位置;(2)以BC為軸把△ABC翻折,可以變到△DBC的位置;(3)以點A為中心,把△ABC旋轉,可以變到△AED的位置.這些圖形中的兩個三角形之間有這樣的關系,其中一個三角形是由另一個三角形按平行移動、翻折或旋轉等方法得到的,像這樣按一定方法把一個圖形變成另一個圖形叫做圖形變換.

  經過圖形變換,圖形的一些性質改變了,而另一些性質仍然保留下來.上面三個圖形經過變換,圖形的位置變化了,但形狀大小都沒有改變,即變換前后的圖形全等,像這樣只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換.

  利用圖形變換,可以為研究幾何圖形提供方便.

試一試,你能用兩個全等三角形拼成圖中的各種圖形嗎?這些圖形都可以看成是一個三角形經過全等變換得到的.

查看答案和解析>>

科目:初中數學 來源: 題型:

我們約定,若一個三角形(記為△A1)是由另一個三角形(記為△A)通過一次平移,或繞其任一邊的中點旋轉180°得到的,則稱△A1是由△A復制的.以下的操作中每一個三角形只可以復制一次,復制過程可以一直進行下去.如圖1,由△A復制出△A1,又由△A1復制出△A2,再由△A2復制出△A3,形成了一個大三角形,記作△B.以下各題中的復制均是由△A開始的,通過復制形成的多邊形中的任意相鄰兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.

(1)圖1中標出的是一種可能的復制結果,小明發(fā)現(xiàn)△A∽△B,其相似比為_________.在圖1的基礎上繼續(xù)復制下去得到△C,若△C的一條邊上恰有11個小三角形(指有一條邊在該邊上的小三角形),則△C中含有______個小三角形;

(2)若△A是正三角形,你認為通過復制能形成的正多邊形是________;

(3)請你用兩次旋轉和一次平移復制形成一個四邊形,在圖2的方框內畫出草圖,并仿照圖1作出標記.

 

查看答案和解析>>

科目:初中數學 來源:2011年山東省九年級二輪模擬考試數學卷 題型:解答題

我們約定,若一個三角形(記為△A1)是由另一個三角形(記為△A)通過一次平移,或繞其任一邊的中點旋轉180°得到的,則稱△A1是由△A復制的.以下的操作中每一個三角形只可以復制一次,復制過程可以一直進行下去.如圖1,由△A復制出△A1,又由△A1復制出△A2,再由△A2復制出△A3,形成了一個大三角形,記作△B.以下各題中的復制均是由△A開始的,通過復制形成的多邊形中的任意相鄰兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.

 1.(1)圖1中標出的是一種可能的復制結果,小明發(fā)現(xiàn)△A∽△B,其相似比為_________.在圖1的基礎上繼續(xù)復制下去得到△C,若△C的一條邊上恰有11個小三角形(指有一條邊在該邊上的小三角形),則△C中含有______個小三角形;

 2.(2)若△A是正三角形,你認為通過復制能形成的正多邊形是________;

 3. (3)請你用兩次旋轉和一次平移復制形成一個四邊形,在圖2的方框內畫出草圖,并仿照圖1作出標記.

 

查看答案和解析>>

同步練習冊答案