12.已知:如圖,AB∥CD,E是AB的中點(diǎn),∠CEA=∠DEB.
(1)試判斷△CED的形狀并說明理由;
(2)若AC=5,求BD的長(zhǎng).

分析 (1)根據(jù)平行線的性質(zhì)得到∠AEC=∠ECD,∠BED=∠EDC,等量代換得到∠ECD=∠EDC,即可得到結(jié)論;
(2)由E是AB的中點(diǎn),得到AE=BE,推出△AEC≌△BED,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

解答 解:(1)△CED是等腰三角形,
∵AB∥CD,
∴∠AEC=∠ECD,∠BED=∠EDC,
∵∠CEA=∠DEB,
∴∠ECD=∠EDC,
∴△CED是等腰三角形;

(2)∵E是AB的中點(diǎn),
∴AE=BE,
在△AEC與△BED中,
$\left\{\begin{array}{l}{AE=BE}\\{∠AEC=∠BED}\\{CE=DE}\end{array}\right.$,
∴△AEC≌△BED,
∴BD=AC=5.

點(diǎn)評(píng) 本題考查了等腰三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),平行線的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥AC交AB于點(diǎn)E,若AB=8,則DE=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個(gè)奇數(shù)是103,則m的值是10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y=ax2+bx+4在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A(-1,0),B,P是其對(duì)稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,得出以下結(jié)論:
①2a+b=0,
②x=3是方程ax2+bx+4=0的一個(gè)根,
③△PAB周長(zhǎng)的最小值是5+$\sqrt{17}$,
④9a+4<3b.
其中正確的是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,平面直角坐標(biāo)系內(nèi)點(diǎn)A(-2,3),B(0,3),將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,得到△OA′B′,則點(diǎn)A′的坐標(biāo)是(2,-3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.在外來文化的滲透和商家的炒作下,過洋節(jié)儼然成為現(xiàn)今青少年一種時(shí)尚,圣誕節(jié)前期,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為每個(gè)2元的蘋果的銷售情況,請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.據(jù)報(bào)載,2016年我國將發(fā)展固定寬帶接入新用戶362000000戶,其中362000000用科學(xué)記數(shù)法表示為3.62×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.解方程組
(1)$\left\{\begin{array}{l}{x+y=6}\\{3x-y=-2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4x-3y=-17}\\{5x-9y=-37}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.命題“兩邊分別相等且其中一組等邊的對(duì)角相等的兩個(gè)三角形全等”的題設(shè)是兩三角形兩邊分別相等且其中一組等邊的對(duì)角相等,它是假命題(填“真”或“假”).

查看答案和解析>>

同步練習(xí)冊(cè)答案