【題目】如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點,BC=10.
(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù);
(2)若EF=4,求△MEF的面積.
【答案】(1)∠EMF=40°;(2)2.
【解析】
(1)根據(jù)直角三角形的性質(zhì)得到BM=FM,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;
(2)作MN⊥EF于N,根據(jù)直角三角形的性質(zhì)得到FM=BC=5,根據(jù)等腰三角形的性質(zhì)、三角形面積公式計算.
解:(1)∵CF⊥AB,M為BC的中點,
∴BM=FM,
∵∠ABC=50°,
∴∠MFB=∠MBF=50°,
∴∠BMF=180°-2×50°=80°,
同理,∠CME═180°-2×60°=60°,
∴∠EMF=180°-∠BMF-∠CME=40°;
(2)作MN⊥EF于N,
∵CF⊥AB,M為BC的中點,
∴MF是Rt△BFC斜邊上的中線,
∴FM=BC=5,
同理可得,ME=5,
∴△EFM是等腰三角形,
∵EF=4,
∴FN=2,
∴MN==,
∴△EFM的面積=EFMN=×4×=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇乘坐一艘游船出海游玩,游船上的雷達掃描探測得到的結(jié)果如圖所示,每相鄰兩個圓之間距離是1km (最小圓的半徑是1km ),下列關(guān)于小艇 A , B 的位置描述,正確的是( )
A.小艇 A 在游船的北偏東60°方向上,且與游船的距離是3km
B.游船在小艇 A 的南偏西60°方向上,且與小艇 A 的距離是3km
C.小艇 B 在游船的北偏西30°方向上,且與游船的距離是 2km
D.游船在小艇 B 的南偏東60°方向上,且與小艇 B 的距離是 2km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點分別在射線上運動(不與點重合)
觀察:
(1)如圖1,若和的平分線交于點,_____°
猜想:
(2)如圖2,隨著點分別在射線上運動(不與點重合). 若是的平分線,的反向延長線與的平分線交于點, 的大小會變嗎?如果不會,求的度數(shù);如果會改變,說明理由.
拓展:
(3)如圖3,在(2)基礎(chǔ)上,小明將沿折疊,使點落在四邊形內(nèi)點′的位置,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某乒乓球的質(zhì)量檢驗結(jié)果如下:
抽取的乒乓球數(shù)n | 50 | 100 | 200 | 500 | 1000 | 1500 | 2000 |
優(yōu)等品的頻數(shù)m | 48 | 95 | 188 | x | 948 | 1426 | 1898 |
優(yōu)等品的頻率(精確到0.001) | 0.960 | y | 0.940 | 0.944 | z | 0.951 | 0.949 |
(1)根據(jù)表中信息可得:x=______,y=______,z=______;
(2)從這批乒乓球中,任意抽取一只乒乓球是優(yōu)等品的概率的估計值是多少?(精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,給出下列的條件,能判斷它是平行四邊形的是( )
A. AB//CD, AD=BCB. ∠B=∠C,∠A=∠D
C. AB=AD, BC=CDD. AB=CD, AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為8,動點M從點B出發(fā),沿B→A→C→B的方向以每秒3個單位長度的速度運動,動點N從點C出發(fā),沿C→A→B-C的方向以每秒2個單位長度的速度運動.
(1)若動點M、N同時出發(fā),經(jīng)過幾秒第一次相遇?
(2)若動點M、N同時出發(fā),且其中一點到達終點時,另一點即停止運動.在△ABC的邊上是否存在一點D,使得以點A、M、N、D為頂點的四邊形為平行四邊形?若存在,求此時運動的時間及點D的具體位置;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的平分線,求證:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com