梯形的中位線長為3,高為2,則該梯形的面積為        .
6

試題分析:根據(jù)梯形的中位線定理及梯形的面積公式即可求得結(jié)果.
由題意得梯形的面積(上底+下底)×高=中位線×高=6.
點評:解答本題的關(guān)鍵是熟練掌握梯形的中位線平行線于上下底,且等于上下底和的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,E、F是□ABCD對角線AC上不重合的兩點. 請你添加一個適當(dāng)?shù)臈l件,使四邊形DEBF是平行四邊形.添加的條件可以是          .(只需填寫一個正確的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,EDC邊上的點,連接BE,將ΔBCE繞點C順時針方向旋轉(zhuǎn)90°得到ΔDCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為
A.10°B.15°
C.20°D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的邊長是l0cm.一條對角線的長是12cm,則菱形的面積是   cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,在△ABC中,∠BAC=120°,以BC為邊向外作等邊三角形△BCD,把△ABD繞著點D按順時針方向旋轉(zhuǎn)60°后得到△ECD,且A,C,E在一條直線上,若AB=3,AC=2,求∠BAD的度數(shù)與AD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形ABCD中,對角線相交于點O;E、F、G、H分別是AD、BD、BC、AC的中點.

(1)說明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個什么條件時,四邊形EFGH是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖四邊形中,點E、F、G、H分別是AD、BC、BD、AC的中點,當(dāng)四邊形ABCD滿足條件__  _時,四邊形EGFH是菱形.(填一個使結(jié)論成立的條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中,點E、F在對角線上,要使AE=CF,則需添加一個條件為
______________(寫一個即可) .

查看答案和解析>>

同步練習(xí)冊答案