【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線y= (0<k<2)的圖象分別交AB,CB于點E,F(xiàn),連接OE,OF,EF,SOEF=2SBEF , 則k值為( )

A.
B.1
C.
D.

【答案】A
【解析】解:∵四邊形OABC是矩形,BA⊥OA,A(1,0),

∴設E點坐標為(1,m),則F點坐標為( ,2),

則SBEF= (1﹣ )(2﹣m),SOFC=SOAE= m,

∴SOEF=S矩形ABCO﹣SOCF﹣SOEA﹣SBEF=2﹣ m﹣ m﹣ (1﹣ )(2﹣m),

∵SOEF=2SBEF,

∴2﹣ m﹣ m﹣ (1﹣ )(2﹣m)=2 (1﹣ )(2﹣m),

整理得 (m﹣2)2+m﹣2=0,解得m1=2(舍去),m2= ,

∴E點坐標為(1, );

∴k= ,

所以答案是:A.

【考點精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義的相關知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D,E分別是⊙O的內(nèi)接正三角形ABC的AB,AC邊上的中點,若⊙O的半徑為2,則DE的長等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格)

(1)畫出△ABCBC邊上的高AHBC邊上的中線AD

(2)畫出將△ABC向右平移5格又向上平移3格后的△ABC′.

(3)ABC的面積為   

(4)若連接AA′,CC′,則這兩條線段之間的關系是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線 , 則下列結(jié)論:① a﹣b+c>0;②b>0;③陰影部分的面積為4;④若c=﹣1,則 . 其中正確的是(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,過點AADBC,垂足為DEAB上一點,過點EEFBC,垂足為F,過點DDGABAC于點G

1)依題意補全圖形;

2)請你判斷∠BEF與∠ADG的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點E在邊CD上,且BG=CG,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個數(shù)是( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE

1)求證:CE=AD

2)當點DAB中點時,四邊形BECD是什么特殊四邊形?說明理由

3)若DAB的中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀材料)

小明同學遇到下列問題:

解方程組,他發(fā)現(xiàn)如果直接用代入消元法或加減消元法求解,運算量比較大,也容易出錯.如果把方程組中的(2x+3y)看作一個數(shù),把(2x3y)看作一個數(shù),通過換元,可以解決問題.以下是他的解題過程:

m2x+3y,n2x3y,

這時原方程組化為,解得,

代入m2x+3yn2x3y

解得

所以,原方程組的解為

(解決問題)

請你參考小明同學的做法,解決下面的問題:

1)解方程組;

2)已知方程組的解是,求方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商人將單價為8元的商品按每件10元出售,每天可銷售100件,已知這種商品每提高2元,其銷量就要減少10件,為了使每天所賺利潤最多,該商人應將銷售價(為偶數(shù))提高( )
A.8元或10元
B.12元
C.8元
D.10元

查看答案和解析>>

同步練習冊答案