如圖,弦AB是⊙O的內接正方形的一條邊,則弦AB所對的圓周角的度數(shù)為   
【答案】分析:作出圖形,求出一條邊所對的圓心角的度數(shù),再根據(jù)圓周角和圓心角的關系解答.
解答:解:圓內接正方形的邊AB所對的圓心角∠1=360°÷4=90°,則∠2=360°-90°=270°,
根據(jù)圓周角等于同弧所對圓心角的一半,
AB所對的圓周角的度數(shù)是90°×=45°或270°×=135°.
故答案為45°或135°.
點評:本題考查學生對正多邊形的概念掌握和計算的能力,屬于基礎題,要注意分兩種情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、關于圖形變化的探討:
(1)①例題1.如圖1,AB是⊙O的直徑,直線l與⊙O有一個公共點C,過A、B分別作l的垂線,垂足為E、F,則EC=CF.
②上題中,當直線l向上平行移動時,與⊙O有了兩個交點C1、C2,其它條件不變,如圖2,經(jīng)過推證,我們會得到與原題相應的結論:EC1=C2F.
③把直線1繼續(xù)向上平行移動,使弦C1C2與AB交于點P(P不與A,B重合).在其它條件不變的情況下,請你在圖3的圓中將變化后的圖形畫出來,標好對應的字母,并寫出與①②相應的結論等式.判斷你寫的結論是否成立,若不成立,說明理由,若成立,給以證明.結論
EC1=C2F
.證明結論成立或說明不成立的理由
(2)①例題2.如圖4,BC是⊙O的直徑.直線1是過C點的切線.N是⊙O上一點,直線BN交1于點M.過N點的切線交1于點P,則PM2=PC2
②把例題2中的直線1向上平行移動,使之與⊙O相交,且與直線BN交于B、N兩點之間.其它條件仍然不變,請你利用圖5的圓把變化后的圖形畫出來,標好相應的字母,并寫出與①相應的結論等積式,判斷你寫的結論是否成立,若不成立,說明理由,若成立,給以證明.結論
PM2=PC1•PC2
.證明結論成立或說明不成立的理由:
(3)總結:請你通過(1)、(2)的事實,用簡練的語言,總結出某些幾何圖形的一個變化規(guī)律
在某些幾何圖形中,平行移動某條直線,有些幾何關系保持不變.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,AB是⊙O的直徑,AC是弦,直線CD切⊙O于點C,AD⊥CD,垂足為D.
(1)求證:AC2=AB•AD;
(2)若將直線CD向上平移,交⊙O于C1、C2兩點,其它條件不變,可得到圖2所示的圖形,試探索AC1、AC2、AB、AD之間的關系,并說明理由;
(3)把直線C1D繼續(xù)向上平移,使弦C1C2與直徑AB相交(交點不與A、B重合),其它條件不變,請你在圖3中畫出變化后的圖形,標好相應字母,并試著寫出與(2)相應的結論,判斷你的結論是否成立?若不成立,請說明理由;若成立,請給出證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,弦AB是⊙O的內接正方形的一條邊,則弦AB所對的圓周角的度數(shù)為
45°或135°
45°或135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,弦AB是⊙O的內接正方形的一條邊,則弦AB所對的圓周角的度數(shù)為________.

查看答案和解析>>

同步練習冊答案