分析 (1)將A、B兩點的坐標代入拋物線的解析式,得到關于a、b的二元一次方程組,從而可求得a、b的值;
(2)①由切線的性質可知PH⊥AC,當H在點C下方時,由△CHP∽△AOC可知∠PCH=∠CAO從而可證明CP∥x軸,于是得到y(tǒng)P=-2,yP=-2代入拋物線的解析式可求得x1=0(舍去),x2=-1,從而可求得P(-1,-2);如圖1,當H′在點C上方時,由相似三角形的性質可知:∠P′CH′=∠CAO,故此QA=QC,設OQ=m,則QC=QA=m+1,在Rt△QOC中,由勾股定理可求得m的值,從而得到點Q的坐標,然后利用待定系數法求得直線C P′的解析式為y=-$\frac{4}{3}$x-2,然后將CP′與拋物線的解析式聯立可求得點P′的坐標為(-$\frac{7}{3}$,$\frac{10}{9}$).
(3)在x軸上取一點D,如圖(2),過點D作DE⊥AC于點E,使DE=4.在Rt△AOC中,由勾股定理可知AC=$\sqrt{5}$,由題意可知證明△AED∽△AOC,由相似三角形的性質可求得AD=2$\sqrt{5}$,故此可得到點D的坐標為D(1-2$\sqrt{5}$,0)或D(1+2$\sqrt{5}$,0),過點D作DP∥AC,交拋物線于P,利用待定系數法可求得直線AC的解析式為y=2x-2,于是得到直線PD的解析式為y=2x+4$\sqrt{5}$-2或y=2x-4$\sqrt{5}$-2,將直線PD的解析式與拋物線的解析式聯立可求得點P的坐標.
解答 解:(1)∵將x=1,y=0,x=-2,y=0代入y=ax2+bx-2得$\left\{\begin{array}{l}{a+b-2=0}\\{4a-2b-2=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$,
∴拋物線的解析式為y=x2+x-2.
(2)解①∵圓P與直線AC相切,
∴PH⊥AC.
(i)如圖1,當H在點C下方時,
①∵△CHP∽△AOC,
∴∠PCH=∠CAO.
∴CP∥x軸.
∴yP=-2.
∴x2+x-2=-2.
解得x1=0(舍去),x2=-1,
∴P(-1,-2).
(ii)如圖1,當H′在點C上方時.
∵∠P′CH′=∠CAO,
∴QA=QC,
設OQ=m,則QC=QA=m+1,
在Rt△QOC中,由勾股定理,得m2+22=(m+1)2,解得,m=$\frac{3}{2}$,即OQ=$\frac{3}{2}$;
設直線C P′的解析式為y=kx-2,
把Q(-$\frac{3}{2}$,0)的坐標代入,得$-\frac{3}{2}$k-2=0,解得k=-$\frac{4}{3}$,∴y=-$\frac{4}{3}$x-2,
由-$\frac{4}{3}$x-2=x2+x-2,解得x1=0(舍去),x2=$-\frac{7}{3}$,此時y=-$\frac{4}{3}$×(-$\frac{7}{3}$)-2=$\frac{10}{9}$,
∴P′(-$\frac{7}{3}$,$\frac{10}{9}$).
∴點P的坐標為(-1,-2)或(-$\frac{7}{3}$,$\frac{10}{9}$)
②在x軸上取一點D,如圖(2),過點D作DE⊥AC于點E,使DE=4.
在Rt△AOC中,AC=$\sqrt{A{O}^{2}+C{O}^{2}}$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,
∵∠COA=∠DEA=90°,∠OAC=∠EAD,
∴△AED∽△AOC.
∴$\frac{AD}{AC}=\frac{DE}{OC}$,即$\frac{AD}{\sqrt{5}}$=$\frac{4}{2}$,解得AD=2$\sqrt{5}$,
∴D(1-2$\sqrt{5}$,0)或D(1+2$\sqrt{5}$,0).
過點D作DP∥AC,交拋物線于P,設直線AC的解析式為y=kx+b.
將點A、C的坐標代入拋物線的解析式得到:$\left\{\begin{array}{l}{b=-2}\\{k+b=0}\end{array}\right.$.
解得:$\left\{\begin{array}{l}{k=2}\\{b=-2}\end{array}\right.$.
∴直線AC的解析式為y=2x-2.
∴直線PD的解析式為y=2x+4$\sqrt{5}$-2或y=2x-4$\sqrt{5}$-2,
當2x+4$\sqrt{5}$-2=x2+x-2時,即x2-x-4$\sqrt{5}$=0,解得x1=$\frac{1+\sqrt{1+16\sqrt{5}}}{2}$,x2=$\frac{1-\sqrt{1+16\sqrt{5}}}{2}$;
當2x-4$\sqrt{5}$-2=x2+x-2時,即x2-x+4$\sqrt{5}$=0,方程無實數根.
∴點P的坐標為($\frac{1+\sqrt{1+16\sqrt{5}}}{2}$,$\sqrt{1+16\sqrt{5}}+4\sqrt{5}$-1)或($\frac{1-\sqrt{1+16\sqrt{5}}}{2}$,-$\sqrt{1+16\sqrt{5}}+4\sqrt{5}-1$).
點評 本題主要考查的是二次函數的綜合應用,解答本題主要應用了切線的性質、相似三角形的性質和判定、待定系數法求一次函數和二次函數的解析式、勾股定理等知識點,求得點Q的坐標和點D的坐標是解題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 1種 | B. | 2種 | C. | 3種 | D. | 4種 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | O→D→C→B | B. | A→B→C | C. | D→O→C→B | D. | B→C→O→A |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com