已知x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實數(shù)根,且x1+x2=﹣2,x1•x2=1,則ba的值是( )

A. B.﹣ C.4 D.﹣1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(四川涼山卷)數(shù)學(解析版) 題型:解答題

閱讀下列材料并回答問題:

材料1:如果一個三角形的三邊長分別為a,b,c,記,那么三角形的面積為. ①

古希臘幾何學家海倫(Heron,約公元50年),在數(shù)學史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.

我國南宋數(shù)學家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:. ②

下面我們對公式②進行變形:

這說明海倫公式與秦九韶公式實質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點分別是D、E、F.

(1)求△ABC的面積;

(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(四川廣安卷)數(shù)學(解析版) 題型:選擇題

如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=,則S陰影=( )

A.2π B.π C.π D.π

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(山東威海卷)數(shù)學(解析版) 題型:填空題

如圖,直線y=x+1與x軸交于點A,與y軸交于點B,△BOC與△B′O′C′是以點A為位似中心的位似圖形,且相似比為1:3,則點B的對應點B′的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(山東威海卷)數(shù)學(解析版) 題型:選擇題

如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結(jié)論錯誤的是( )

A.=

B.AD,AE將∠BAC三等分

C.△ABE≌△ACD

D.S△ADH=S△CEG

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(江西卷)數(shù)學(解析版) 題型:計算題

設拋物線的解析式為 ,過點B1(1,0)作x軸的垂線,交拋物線于點A1(1,2);過點B2(1,0)作x軸的垂線,交拋物線于點A2,…;過點,0)(n為正整數(shù) )作x軸的垂線,交拋物線于點,連接,得直角三角形

(1)求a的值;

(2)直接寫出線段 ,的長(用含n的式子表示);

(3)在系列Rt△ 中,探究下列問題:

①當n為何值時,Rt△是等腰直角三角形?

②設1≤k<m≤n (k,m均為正整數(shù)),問是否存在Rt△與Rt△相似?若存在,求出其相似比;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(江西卷)數(shù)學(解析版) 題型:解答題

為了了解家長關(guān)注孩子成長方面的狀況,學校開展了針對學生家長的“您最關(guān)心孩子哪方面成長”的主題調(diào)查,調(diào)查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質(zhì)”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計圖.

(1)補全條形統(tǒng)計圖.

(2)若全校共有3600位學生家長,據(jù)此估計,有多少位家長最關(guān)心孩子“情感品質(zhì)”方面的成長?

(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關(guān)注和指導?

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(江蘇無錫卷)數(shù)學(解析版) 題型:解答題

如圖,已知?ABCD的三個頂點A(n,0)、B(m,0)、D(0,2n)(m>n>0),作?ABCD關(guān)于直線AD的對稱圖形AB1C1D.

(1)若m=3,試求四邊形CC1B1B面積S的最大值;

(2)若點B1恰好落在y軸上,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2016年初中畢業(yè)升學考試(湖南長沙卷)數(shù)學(解析版) 題型:選擇題

已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:

①該拋物線的對稱軸在y軸左側(cè);

②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;

③a﹣b+c≥0;

的最小值為3.

其中,正確結(jié)論的個數(shù)為( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案