(2010•百色)以百色汽車總站為坐標(biāo)原點(diǎn),向陽(yáng)路為y軸建立直角坐標(biāo)系,百色起義紀(jì)念館位置如圖所示,則其所覆蓋的坐標(biāo)可能是( )

A.(-5,3)
B.(4,3)
C.(5,-3)
D.(-5,-3)
【答案】分析:觀察圖形可知,百色起義紀(jì)念館位置在第四象限,根據(jù)第四象限的符號(hào)特點(diǎn)進(jìn)行判斷即可.
解答:解:因?yàn)榈谒南笙迌?nèi)點(diǎn)的坐標(biāo),橫坐標(biāo)為正數(shù),縱坐標(biāo)為負(fù)數(shù),結(jié)合各選項(xiàng)符合條件的只有C(5,-3).
故選C.
點(diǎn)評(píng):本題主要考查了平面直角坐標(biāo)系中各個(gè)象限的點(diǎn)的坐標(biāo)的符號(hào)特點(diǎn).四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•百色)已知拋物線y=x2+bx+c的圖象過(guò)A(0,1)、B(-1,0)兩點(diǎn),直線l:x=-2與拋物線相交于點(diǎn)C,拋物線上一點(diǎn)M從B點(diǎn)出發(fā),沿拋物線向左側(cè)運(yùn)動(dòng).直線MA分別交對(duì)稱軸和直線l于D、P兩點(diǎn).設(shè)直線PA為y=kx+m.用S表示以P、B、C、D為頂點(diǎn)的多邊形的面積.
(1)求拋物線的解析式,并用k表示P、D兩點(diǎn)的坐標(biāo);
(2)當(dāng)0<k≤1時(shí),求S與k之間的關(guān)系式;
(3)當(dāng)k<0時(shí),求S與k之間的關(guān)系式.是否存在k的值,使得以P、B、C、D為頂點(diǎn)的多邊形為平行四邊形?若存在,求此時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由;
(4)若規(guī)定k=0時(shí),y=m是一條過(guò)點(diǎn)(0,m)且平行于x軸的直線.當(dāng)k≤1時(shí),請(qǐng)?jiān)谙旅娼o出的直角坐標(biāo)系中畫(huà)出S與k之間的函數(shù)圖象.求S的最小值,并說(shuō)明此時(shí)對(duì)應(yīng)的以P、B、C、D為頂點(diǎn)的多邊形的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣西百色市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•百色)已知拋物線y=x2+bx+c的圖象過(guò)A(0,1)、B(-1,0)兩點(diǎn),直線l:x=-2與拋物線相交于點(diǎn)C,拋物線上一點(diǎn)M從B點(diǎn)出發(fā),沿拋物線向左側(cè)運(yùn)動(dòng).直線MA分別交對(duì)稱軸和直線l于D、P兩點(diǎn).設(shè)直線PA為y=kx+m.用S表示以P、B、C、D為頂點(diǎn)的多邊形的面積.
(1)求拋物線的解析式,并用k表示P、D兩點(diǎn)的坐標(biāo);
(2)當(dāng)0<k≤1時(shí),求S與k之間的關(guān)系式;
(3)當(dāng)k<0時(shí),求S與k之間的關(guān)系式.是否存在k的值,使得以P、B、C、D為頂點(diǎn)的多邊形為平行四邊形?若存在,求此時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由;
(4)若規(guī)定k=0時(shí),y=m是一條過(guò)點(diǎn)(0,m)且平行于x軸的直線.當(dāng)k≤1時(shí),請(qǐng)?jiān)谙旅娼o出的直角坐標(biāo)系中畫(huà)出S與k之間的函數(shù)圖象.求S的最小值,并說(shuō)明此時(shí)對(duì)應(yīng)的以P、B、C、D為頂點(diǎn)的多邊形的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(01)(解析版) 題型:選擇題

(2010•百色)如圖,在直角坐標(biāo)系中,射線OA與x軸正半軸重合,以O(shè)為旋轉(zhuǎn)中心,將OA逆時(shí)針旋轉(zhuǎn):OA?OA1?OA2…?OAn…,旋轉(zhuǎn)角∠AOA1=2°,A1OA2=4°,∠A2OA3=8°,…要求下一個(gè)旋轉(zhuǎn)角(不超過(guò)360°)是前一個(gè)旋轉(zhuǎn)角的2倍.當(dāng)旋轉(zhuǎn)角大于360°時(shí),又從2°開(kāi)始旋轉(zhuǎn),即∠A8OA9=2°,∠A9OA10=4°,…周而復(fù)始.則當(dāng)OAn與y軸正半軸重合時(shí),n的最小值為( ) (提示:2+22+23+24+25+26+27+28=510)

A.16
B.24
C.27
D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:選擇題

(2010•百色)以百色汽車總站為坐標(biāo)原點(diǎn),向陽(yáng)路為y軸建立直角坐標(biāo)系,百色起義紀(jì)念館位置如圖所示,則其所覆蓋的坐標(biāo)可能是( )

A.(-5,3)
B.(4,3)
C.(5,-3)
D.(-5,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案