(2009•安順)如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

【答案】分析:(1)易得c=3,故設(shè)拋物線解析式為y=ax2+bx+3,根據(jù)拋物線所過(guò)的三點(diǎn)的坐標(biāo),可得方程組,解可得a、b的值,即可得解析式;
(2)易由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo),根據(jù)圖形間的關(guān)系可得四邊形ABDE的面積=S△ABO+S梯形BOFD+S△DFE,代入數(shù)值可得答案;
(3)根據(jù)題意,易得∠AOB=∠DBE=90°,且,即可判斷出兩三角形相似.
解答:解:(1)∵拋物線與y軸交于點(diǎn)(0,3),
∴設(shè)拋物線解析式為y=ax2+bx+3(a≠0)(1分)
根據(jù)題意,得
解得
∴拋物線的解析式為y=-x2+2x+3(5分);

(2)如圖,設(shè)該拋物線對(duì)稱(chēng)軸是DF,連接DE、BD.過(guò)點(diǎn)B作BG⊥DF于點(diǎn)G.
由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為D(1,4)(2分)
設(shè)對(duì)稱(chēng)軸與x軸的交點(diǎn)為F
∴四邊形ABDE的面積=S△ABO+S梯形BOFD+S△DFE
=AO•BO+(BO+DF)•OF+EF•DF
=×1×3+×(3+4)×1+×2×4
=9;

(3)相似,如圖,
BD=;
∴BE=
DE=
∴BD2+BE2=20,DE2=20
即:BD2+BE2=DE2,
所以△BDE是直角三角形
∴∠AOB=∠DBE=90°,且,
∴△AOB∽△DBE(2分).
點(diǎn)評(píng):本題考查學(xué)生將二次函數(shù)的圖象與解析式相結(jié)合處理問(wèn)題、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2009•安順)如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•安順)如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市阜寧縣實(shí)驗(yàn)初中九年級(jí)一模數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安順)如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年貴州省安順市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安順)如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案